
CODOS

Channel-Oriented Disk Operating System

Release 2.0

USER MANUAL

January 1982 REV. B

TABLE OF CONTENTS

Introduction. 2). 5). '\eie's wieie)ae'e.0 vie® eee e nce eeeee

Specifications and Summary of Features

Selection and Care of Diskettes.......

CODOS System Concepts.....

Channels........++ *
Devices. .

Files....
Monitor and Commands........

Monitor Command Descriptions.... Rie'asginisie in| 6 0/0 loloiPiaiaveleletyfelnis/s/siintsle’ ells 's's't-pieietefaive aio Seyl

CODOS Utility Program Descriptions....... fel laleialernlatehwietehetetete ievaveiersinistels svorerararss oe Aad

Interfacing User-Written Assembly-Language Programs to CODOS..........-eeeee% 5-1

ISMCUDGSCOEDELONG. wicrsislslefeiain'a eisjainisielniereleisicine eiedera tre ofevateislshetartrein mialetelate es ievete ore wee 6-1

16-Bit Arithmetic Pseudo-processor (SVC #27)...

Keyboard and Text Display I/O Driver....

Graphics Display I/O Driver..... Aan

System Customization.. 10-1
Disk Drive Parameters.. 10-2
Adding a Standard Printer 5

Writing and Adding Your Own I/O Drivers...
STARTUP.J File
I/O Driver Parameters...

A. System Error Messages.

B. Internal File Formats
C. Bootstrap Loader PROM. Cath cereale + C-1
D. Sample Program: Fast, Interrupt- Bopiven: Direct- to-Disk Data Aquisition... D-1
E. Addresses of System Parameters...... A i Aste aiaie
Bs HUMOMONV >| MADSuis/s(suuic esd sielsiele sisis «1s. 0

G. Syntax Diagrams for built-in Commands: 5
H. MTU-130 Character Code Chart........
I. Using Extended Memory Addressing..
J. Effect of console interrupt and reset
K. Non-Overlay CODOS Commands.......... Bs

CHAPTER 1.

INTRODUCTION TO CODOS

CODOS (Channel-Oriented Disk Operating System) is an extremely powerful and

versatile disk operating system for the MTU-130 microcomputer. It is a program
which provides all the necessary functions for managing the resources of the

MIU-130 computer, and includes a Console Monitor for direct control of the system

from the keyboard. CODOS provides a single-user operating system with exceptional

levels of performance and reliability. The system is designed from the ground up

for integration with the MTU-130's Disk Controller and takes full advantage of its

many engineering achievements.

CODOS is loaded from disk into memory automatically on power-up by the on-board

bootstrap loader PROM (Programmable Read-Only Memory). Loading the system takes

about one second, after which CODOS enables the hardware write-protect on the

"system" 8K of memory in order to prevent an errant user program from inadvertently

“erashing" the system by accidently writing into system memory. Once loaded into

memory, the CODOS Monitor assumes control. The Monitor first reads a file of

commands froma special "STARTUP" file on disk. This STARTUP file allows any
desired list of programs or Monitor commands to be executed automatically without
operator intervention when the system is powered-up, facilitating turnkey applica-
tions. When all the commands on the STARTUP file have been completed, the CODOS

Monitor accepts additional commands from the operator in an interactive mode.

These commands allow you to execute programs, store or retrieve files from disk,

examine or modify various system attributes, etc. For example, to execute your

inventory-management program, you might type "INVENTORY", and the file named INVEN-

TORY would be located on the disk by CODOS, loaded into memory, and executed. This

type of program is called a "User-defined command".

The CODOS Monitor provides 36 built-in commands with free-format input. These

commands are quite versatile. For example, the command "TYPE MYTEXT" will display

the contents of the file called MYTEXT on the Console, "TYPE MYFILE P" will print

the file on a line printer, and "TYPE MYFILE YOURFILE:1" will create a duplicate

copy of the file with a new name on disk drive 1. If you make a mistake, English-
language error messages such as "FILE NEEDED WAS NOT FOUND" help pinpoint your

errors quickly. An almost unlimited number of User-defined commands can be added

to the built-in commands. For example, typing "SAVE FFT 2000 2340" creates a new

User-Command called "FFT" which executes using memory locations $2000 through

$2340. Once defined, this command can be executed by merely typing its name as

input to the Monitor. Arguments may also be passed to user-defined Commands. For

example, "FFT NEWDATA" executes the User-command FFT with the argument NEWDATA.

Any kind of commands can also be read from disk files or other devices, allowing

for BATCH processing. For example, typing "DO TUESDAYJOB.J" would tell CODOS to

read and execute all the Monitor commands found on the file called "TUESDAYJOB.J".

The convenience of CODOS has not been gained at the expense of efficiency.

Disk operations are much faster than on competetive systems. For example, CODOS

ean typically locate, load, and begin execution of a 32K byte program in 3 seconds.

CODOS uses relatively little memory and address space because it is written entire-

ly in optimized machine language and uses over 15 overlays. These overlays are
automatically loaded into memory only when needed. This loading operation occurs

so fast that it is generally imperceptible to the operator, and provides the

funetionality of a much larger system in less than 12K bytes.

CODOS provides true device-independent I-0 over logical "channels", as found in

many mainframe computers. A program can output to a printer, display, or disk file

with equal ease. Since I-0 channels can be assigned by a Monitor command, programs

ean access different devices or files without modification. Disk I-O is completely

transparent to application programs, which do not need to provide buffers, "File

Control Blocks", or other artifices in order to do disk I-0. A disk file can be

randomly accessed at any position in the file with one disk access or less. Disk

files may be as large as the remaining space on the disk, and can be increased in

size at will. Unlike many other systems, no "compaction" is needed.

Both single and double-sided 8 inch disk drives may be used. CODOS will auto-

matically use both sides of a double-sided disk, and only one side of a single-

sided disk in a double-sided drive, allowing the double-sided owner complete

flexibility in reading or writing both single and double-sided disks. Single and

double-sided drives may be freely mixed on the same system. Up to four drives may

be used, allowing up to a whopping four megabytes of formatted online storage using

double-sided. drives.

Interfacing for user-written Assembly-language programs is provided in the form

of "Supervisor Call" Pseudo-instructions (SVCs), which simplify program development

and enhance portability among different CODOS-based systems. Programs using SVCs

may usually be exchanged between the MTU-130 and KIM, SYM, AIM-65, and PET compu-

ters using CODOS without modification. Many examples of SVC usage are given in

sections 5 and.6, and a complete demonstration program is provided in Appendix D

which illustrates CODOS's ability to perform high-speed, direct-to-disk data aqui-

sition using interrupts.

In addition to the built-in Monitor commands, several Utility programs are

provided. A FORMAT Utility initializes new disks and erases old disks. It can be

used to convert any soft-sectored disk to CODOS format. If desired, the FORMAT

Utility can thoroughly test disks for defective sectors. If bad sectors are found,

they are bypassed automatically by the system when allocating disk space so that

the disk can still be used without errors. File copying utilities are provided for

both single and multiple-drive systems. The COPYF Utility can copy files individ-

wally, copy in groups, or copy an entire disk. For example, typing "COPYF STUFF"

copies only the file called "STUFF" from drive 0 to drive 1, "COPYF OLD*.?" copies

all file names which begin with "OLD", and "COPYF" will simply copy all files which

do not already exist on the destination disk.

Extensive provisions have been made for "customizing" CODOS to your particular

needs. An interactive utility program called SYSGENDEVICE is provided for adding

additional devices to your system (such as a line printer). Once devices have been

added to the system, they can be assigned to any CODOS I-O channels at will. A

second Utility program is used for optimizing the performance of your disk drives.

Tables are provided detailing the system memory map and the location of key system

variables.

Be sure to fill out the system registration card that came with your MTU-130

and return it to the factory. This card assures that you will receive announce-

ments of future CODOS upgrades, changes, and new software offerings as they become

available.

IMPORTANT NOTE

If this is the first time your MTU-130 has been used please refer to the First

Time Power-Up section of the Setup and Installation manual at the front of your

manual binder for first time use procedures.

1-2

CODOS 2.0 SPECIFICATIONS AND SUMMARY OF FEATURES

DISK TYPE: 8 inch Shugart-compatible floppy disk, single or double-sided.

NUMBER OF DRIVES: One to four. Single and double-sided drives may be mixed.

CONTROLLER REQUIRED: MTU K-1013 Floppy Disk Controller/16-K RAM Board.

DATA RECORDING TECHNIQUE: MFM double density; IBM-compatible soft-sectors, 256

bytes per sector, 26 sectors per track, 77 tracks per side.

MAXIMUM FORMATTED CAPACITY: 4 Megabytes (4 double-sided drives).

MAXIMUM NUMBER OF FILES: 247 per disk.

MAXIMUM FILE SIZE: 500K bytes, single-sided; 1M byte, double sided disk.

FILE NAMES: 2 to 12 characters with optional 1-character extension denoting type.

NUMBER OF I-O DATA CHANNELS: 10. Up to 8 may be assigned simultaneously to active

disk files. All channels are bi-directional.

USER RAM REQUIRED FOR OPEN FILE: None.

MINIMUM SYSTEM MEMORY REQUIREMENTS: Normally uses the top 16K of memory system

residence, user buffers, and standard I/O drivers. Uses locations $0200-$06FF on

the CPU board for system parameters. Can be reduced to 10K or less if necessary.

DISK OVERHEAD: For single-sided drives, all of track 0 and 12 plus sectors 0

through 5 of track 13 are used for the system and directory. For two-sided drives,

sectors 0 though 25 of track 0 and sectors 0 through 31 of track 12 are used.

FILE SPACE ALLOCATION: Files are dynamically allocated using a unique inverted list

allocation method which requires no "compaction".

FILE ORGANIZATION: Files consist of an arbitrarily large array of bytes, accessible

at any position. Files may be appended at any time.

RESERVED CODES ON FILES: None.

FILE ACCESS METHODS: Sequential or true random access. Any byte in the file can be

selectively accessed with one disk access.

RECORD SIZE FOR FILE ACCESS: Any size desired, 1 to 65,534 bytes, variable within

the same file.

TRANSFER METHOD: Direct Memory Access (DMA).

CYCLES LOST DURING DMA TRANSFER: None.

AVERAGE CONTINUOUS THROUGHPUT RATE: 19,600 bytes per second, typical.

INTERRUPT SUPPORT: IRQ and NMI are both fully available to user at all times.

Interrupts are permitted during disk access without harm.

BOOTSTRAP LOADER: 256 byte PROM.

1-3

SYSTEM MONITOR: 36 built-in commands. User Commands may be added at will.

MONITOR DIALOG: Commands may be entered directly from the Console keyboard or from
any 1-0 device including disk files, giving a BATCH capability. STARTUP file is

executed automatically on power-up.

COMMAND FORMAT: Free-format; command verb can be abbreviated. Arguments spearated

by blanks and specified by position; many have defaults.

NUMERIC COMMAND ARGUMENTS: Free-format arithmetic expressions using hexadecimal or

decimal values and addition, subtraction, multiplication, division, and remainder

operators.

ERROR MESSAGES: 50 different error messages specified by number and English explan-

ation. Provision for User-defined error processing.

SUPERVISOR CALL FACILITY: 31 SVCs provided for address-independent input-output and

utility functions. Includes 16 bit arithmetic pseudo-processor with multiply and

divide operators.

I-O METHOD: True device-independent Input-Output over data channels. Channels may

be assigned to any device or file on disk.

UTILTIY PROGRAMS: Automated file copy for single and multiple-drive systems; disk

initializer (FORMAT); System generation programs; File attributes list; more than

15 other programs.

EXTENDED MEMORY SUPPORT: Full support of programs and data in any of the MTU-130's

four memory banks (256K byte address space).

RELIABILITY ENHANCEMENTS: Hardware Cyclic Redundancy Check (CRC); hardware write-
protect for operating system nucleus and directory; multiple automatic retry with

reset on read/write errors and seek errors; FORMAT utiltiy tests and bypasses any

defective sectors on disk; all critical directory information is redundantly recor-

ded; utility programs for generating backup files and backup disks; files are

individually write-protectable in software; disks are individually write-protect-

able in hardware.

DISK RELIABILITY - ITS REALLY UP TO YOU!

Floppy disks provide an excellent low-cost storage media for programs and

data, with very high reliability. When used with the high-quality MTU-130 Control-

ler and CODOS Software, the incidence of data read-write failures should be virtu-
ally nil, provided a few simple handling precautions are observed. The way floppy

disks are handled and stored will materially affect their lifetime and reliability.
To insure that you receive the reliability and performance the MTU-130 system is

eapable of, follow the rules below religiously:

1. Always keep the diskette in its protective envelope. Get in the habit of

removing a disk from the drive directly to the paper envelope. Dust particles look

like a boulder to a recorded bit!

2. Do not touch the exposed recording surface of the disk. Fingerprints are a

killer, too.

3. Do not bend the disk. It's called a flexible disk, but you may damage it

if you try to prove it!

4. Do not write on the disk directly with pen or pencil. Use only a soft-tip
marker, and write only in the label area, or you may damage the magnetic surface

underneath.

5. Avoid exposure to harsh environments such as extreme heat or cold. Storage

in a locked car on a hot day is a killer!

6. Keep the diskette away from strong magnetic fields such as_ speakers and

magnetic note hangers.

7. Cigarette smoke is bad for disks as well as people.

If you follow these simple procedures, don't be surprised if you never get a

read/write error. Other disk systems don't often work like that, but we're sure

you won't mind doing without the disk errors!

WHAT KIND OF DISKS SHOULD BE USED?

Any quality soft-sectored 8 inch floppy disk may be used. We recommend Dysan

double density disks for maximum data integrity. However, satisfactory results can

usually be obtained even with diskettes rated only for single density if they are

of good quality, due to the exceptionally high-quality data separator used in the

MIU-130 double-density controller, and the automatic error recovery software built

into CODOS. The FORMAT Utility will automatically record the proper double density

timing marks on any soft-sectored disk.

1=5

GENERAL INFORMATION ABOUT FLOPPY DISKS

Floppy disks are normally sold in boxes of 10, and can be purchased from almost any
computer or business supply house. The disk supplied by MTU is called the Distri-
bution disk (Note: your MTU-130 may have been supplied with two diskettes. The one
labelled CODOS 2.0 is the Distribution disk.) Figure 1-1 illustrates the important.
parts of the floppy disk, which are:

1. Manufacturer's permanent label.

2. User's label and MTU Copyright notice. These blank labels are provided in

several colors with the box of disks. Fill out the label before affixing it to the
disk, and be sure to include the CODOS Copyright notice on all disks which are to
contain a copy of the system.

3. Index hole. There is a hole in the disk surface and a hole in the jacket.
While the disk rotates in its jacket inside the drive, a beam of light shines
through the hole. Once each revolution the holes line up and the light passes
through, triggering timing circuits in the drive. Double-sided disks have their
index hole slightly further off center than single-sided disks, as shown in Figure
2-2. Soft-sector diskettes have only one index hole in the disk itself, but hard
sectored disks (which cannot be used with the MTU-130) have 33.

4, Drive spindle hole. When the disk is in the drive, the drive
spindle into this hole and clamps on

inside its jacket.

inserts the
the exposed disk surface, spinning the disk

5. Head slot. This portion of the disk is exposed for access by the read/-
write head.

6. Write-protect notch. This notch should be covered with the small gummed
label provided in order to write on the disk and should be removed to prevent
writing on the disk. WARNING: User-supplied disk drives may not "recognize" write
-protect labels and can therefore write on a protected disk. Disk drives supplied
by MTU will honor write-protected disks.

Disks should be inserted into the drive in the direction indicated by the
arrow, with the label side towards the movable part of the door.

1-6

FIGURE 1-1: FLOPPY DISK

TWO-SIDED DISKETTE

CHAPTER 2...
CODOS SYSTEM CONCEPTS

The CODOS Operating System is a powerful computer program for managing the

resources of the MTU-130 computer. In particular, it provides a convenient method
for storing and retrieving programs and data on floppy disk storage. The user will

normally interact with CODOS principally through three built-in facilities:

1. The CODOS System Monitor for direct operator control.

3. The CODOS SVC Processor for assembly-language programs.

3. The CODOS Interface Library (CIL) for BASIC programs.

The System Monitor provides a simple method for you to interact directly with

CODOS by typing commands on the MTU-130 keyboard (hereafter called the Console).

These Commands are most often used to initiate execution of other programs, examine

the status of various system attributes (such as the names of files present on

floppy disk), or to alter the status of the system (for example, adding a new
program to floppy disk). The CODOS System Monitor is initiated automatically when

the system is "booted" up. A prompting message is issued on the console display,

and the system awaits your commands. These commands may be either Built-i

commands, Utilities or User-defined commands. All three types of commands ai
described in detail later.

All users of the CODOS system will use the functions of the System Monitor to

some degree. In addition, however, programmers will also want programs to interact

with the operating system. For example, assembly language programmers will wish to

be able to display messages on the Console and input characters from the keyboard.

In most conventional microcomputer systems, support for this type of activity is

provided in a limited sense by making available to the programmer a list of addres-

-ses of system subroutines which perform the basic input/output functions essential
to programming. The programmer can use these functions by writing a Call (JSR) to

the appropriate system subroutine from within the application program. CODOS

provides a different, higher-level method of support for user-written assembly

language programs called the SUPERVISOR CALL (SVC). Although not normally found on

microcomputers, SVC's are used extensively on the mainframe computers. Instead of

a JSR instruction to a system routine, the SVC consists of a BRK ($00) instruction
followed by a byte which identifies the function desired. There are several advan-
tages to this method, the most important of which is that SVCs are address-indepen-

dent. This means that a program using SVCs will run without modification regard-

Tess of the location or version of the operating system. SVCs are discussed in

detail in a later Sections 5, 6, and 7.

The MTU-130 BASIC Interpreter provides a limited interface to CODOS at all

times for saving and loading BASIC programs. Use of the CODOS-BASIC Interface

Library (CIL) gives the BASIC programmer full access to the many features of CODOS

including sequential and random access files, file creation and deletion, and even

provision for executing any CODOS command from a running BASIC program. These

powerful extensions to BASIC are described in the MTU-130 BASIC Reference Manual

and in the CIL manual.

CHANNELS

CODOS provides a capability not normally found on micros called device-inde-
Pendent I-0. Device-independence means that a program (or System Monitor command)
can perform input or output to or from a variety of devices or disk files without
modification. For example, a program which normally displays its output on the
system Console device can be run with the output directed instead to a printer,
without any modification whatsoever to the program. Input or output can also be
re-directed to a file on disk. This feature lends great flexibility to programs.
The devices to be used can be selected by a simple Monitor command, or by the
executing program itself.

The key to device-independence in CODOS is the use of software I-O Channels.
The System Monitor and programs communicate with the outside world over channels.
At any time, these channels may be associated with a given device or file. The
standard CODOS system has ten channels, numbered 0 through 9.- Each of these chan-
nels may be used to send or receive data, or both. For example, a channel assigned
to aa printer would be used as an output-only channel, but if it was assigned to
the system Console it could both send and receive data.

Certain channels have pre-defined uses, and other channels have been given
suggested standard uses in the interest of uniformity among applications. These
channel definitions are given in Table 2-1.

The way in which channels are used will become clearer in following sections
which introduce the CODOS Monitor Commands. The section on interfacing to user
programs, Section 5, describes the use of channels from a programmer's point of
view.

channel
channel
channel
channel
channel
channel
channel
channel
channel

APPLICATION

PROGRAM

CODOS provides "software patch cords" which let you select what device or file is
to be accessed without modifying the program.

2-2

TABLE 2-1: STANDARD CHANNELS

Channel Reserved for internal CODOS operation.
Channel Input commands to CODOS Monitor.
Channel Output from CODOS Monitor.
Channel Available. (Input preferable).

Channel 4: Available. (Input preferable).
Channel 5: Standard input for programs.

Channel 6: Standard output for programs.

Channel Available.
Channel Available. (Output preferable).
Channel 9: Available. (Output preferable).

NOTES FOR TABLE 2-1:

1. Channel 1 and Channel 2 are normally assigned to the console by default.

2. The notation "input preferable" or "output preferable" simply means that
if it is convenient to do so, input should be assigned to the lower numbered

channels and output to the higher channels. This is merely a convention and is not

enforced in any way. All channels can be used in either direction or bi-direction-

ally.

DEVICES

As we have already seen, CODOS communicates with the outside world over
numbered channels. These channels can be associated with either physical devices
or with files. The devices available on any given system are defined during system
generation by using the SYSGENDEVICE Utility, and are identified by a single
letter. Every system has at least two devices: the system Console and the Null
device. The system Console is the MTU-130 keyboard (for input) and the MTU-130 CRT
display (for output), and is given the device name "Cc".

The null device is given the name "N" and is predefined to mean a device that
does nothing. This may seem of dubious merit, but is actually very useful. For
example, if you wish to run a program which normally generates diagnostic messages
on channel 9, you can suppress the diagnostics by merely assigning channel 9 to the
null device.

Additional devices, such as a printer, may be available on any given system,
and may be named as desired during system generation. In the interest of uniform-
ity among systems, the recommended device names are given in Table 2-2 for selected
devices.

Remember that all devices have a single letter name. The use of device names
will be illustrated shortly in the section describing Monitor commands.

2-3

:_ DEVICES

Device Name Description

Console. Input-output terminal device. (Required)
Null device. (Required)
Printer.

Paper tape reader and/or punch.

Terminal (e.g., a Teletype)
Memory. ZHwwza

NOTES FOR TABLE 2-2:

1, Other devices may be named as desired during system generation, using a
single letter for each. See Chapter 10 and the SYSGENDEVICE Utiltiy program
described in Chapter 4.

FILES

Programs, text, and data of any type can be stored and retrieved from floppy
disk for permanent storage using CODOS. A File is a collection of related infor-
mation stored as a logical entity on disk. Each file on disk has a unique name,
designated by the creator of the file. The name consists of from two to twelve
characters, optionally followed by a "." and a one-character file extension. The
first character of the name must be alphabetic. The remaining characters may be
alphabetic, numeric, or the special character "_" (underline), which is used to
improve readability of composite names and to help search for related files using
"wildcards", as will be discussed in Chapter 4. The single-character file exten-
sion may be alphabetic or numeric. If the optional file extension is omitted, a
default file extension of ".C" is assumed by the system. Thus some examples of
legal file names include:

A2
YANK
MY3RDFILE.A
HIS_STUFF .T
OLD_X_Y_DATA.8

The first two file names above will have a default extension of ".c" appended by
the system. The single character file extension is intended to provide the user
with an indication of the kind of file. Although CODOS does not enforce any
particular convention, Table 2-3 lists the standard file extensions which are
strongly suggested for use. Unlisted extensions may be freely used to cover
special kinds of files not included in the list. Note that the extension must be
exactly one character long if given. Also remember that all file names must have
at least two characters. This enables CODOS to distinguish between device names
(which always have one character) and file names.

2-4

TABLE 2-3: FILE EXTENSIONS

Extension Meaning

oA Assembly language source progran.

-B BASIC Program (tokenized memory image format)
oC Command (User-defined command programs and System Utility Programs).

D Data.
—E BASIC program (ASCII format, use BASIC ENTER command to load).

G Graphic data or Display memory image.

oH Hex file (i.e., paper-tape-type format).
ad Job file (i.e., a text file of CODOS Monitor commands)
oL Listing.

T Text.

X Executable code other than a command (e.g., subroutine package).
4 CODOS reserved system file.

NOTES FOR TABLE 2-3:

1. If the extension is not given, ".C" will be assumed. While running BASIC,

the default file extension is ".B".

2. Other extensions may be devised by the user as needed.

3. The extensions given are recommended but not required. Any kind of file
ean have any kind of extension, so long as it is one alphanumeric character.

CODOS SYSTEM MONITOR

The CODOS Monitor is an interactive program which allows the user to enter

commands to the system. The Monitor is part of CODOS and is entered automatically

during startup of the system. When the system is "booted" up, the CODOS memory
image is loaded into memory from the disk in drive 0. A special file called
STARTUP.J is then read by the Monitor and all commands on that file are executed.

At the completion of the startup prucedure, a prompting message will be issued
indicating the version of CODOS which is active, and the prompt, "CODOS) " will

appear. At this time, a valid command can be entered from the Console keyboard.

Every command typed must be terminated by a carriage return, which signals the

Monitor to execute the command. Certain characters may be used for correcting

typing errors or editing the command line during entry; these are summarized in
Table 2-4. In particular note that you can use the BACKSPACE, RUBOUT, cursor left

and cursor right keys to make corrections to your commands. If the line has been
edited, the cursor may be left in the middle of the line when the carriage return
is entered and CODOS will see everything that you see on the displayed command

line. You can also add a comment to your command line if you wish. Any characters
after the ";" character will be ignored by CODOS. To use editing characters in

Table 2-4 which start with CTRL, you must hold down the CTRL key and then depress

the other character indicated.

There are two main types of commands in CODOS: User-defined Commands and

Built-in Commands. Built-in commands are pre-defined by the system. User commands
may be added easily at will by writing an assembly-language program and defining it
as a Command using the built-in SAVE command. In the following discussion, only

built-in commands will be discussed, so the term "command" will be understood to

mea’. "built-in command".

2-5

In order to improve readability and ease the learning process, CODOS commands
ususally consist of full English words which suggest the function to be performed.
However, any built-in command (not user command) can be abbreviated using the "!"
character. Thus, for example,

ASSIGN

ASSI!

AS!

are all equivalents for the ASSIGN command. It is only necessary to type enough
characters before the "!" to uniquely identify the command desired. All built-in
commands must be spelled using uppercase letters.

Most commands require one or more arguments following the command keyword.
These arguments tell the system what entities the command is to operate on. For
example, the command,

ASSIGN 6 MYFILE.T

has two arguments. The first argument in this case is a channel number, and the
second argument is a file name. The command tells CODOS to associate channel 6
with the file called MYFILE.T.

Arguments must be separated from the command keyword and from each other by
one or more BLANKS (not commas!). A few commands use other special delimiters such
as "=" or ":" in certain places in the command; these will be clearly defined.

Sometimes arguments are optional, in which case the user may elect to specify
the argument or else accept the default argument which will be assumed by the
system. In other cases, the user has a choice of several different kinds of argu-
ments. If you type in more arguments than CODOS expects, the extra arguments are

treated as comments and ignored. Often an arbitrary number of arguments may be
given. In order for this manual to have a uniform method for describing the syntax
of various commands and arguments, the following notation is adopted:

1. Angle brackets, "{" and ">", are used to enclose words describing the kind
of entry required.

2. Square brackets, "{" and "]", are used to enclose optional arguments or
symbols, which may be included or omitted as desired.

3. Ellipsis, "...", are used to indicate an arbitrary number of repetitions
of the previous argument(s).

4, Symbols not enclosed in angle brackets are literal symbols which must be
typed exactly as shown.

5. Curly brackets, bt ed and ntn, are used to enclose each of several mutually-
exclusive choices, only one of which may be selected.

For example, we could use this meta-language (a meta-language is a language
used to describe another language) to describe several BASIC statements as follows:

2-6

GOTO <line #>
FOR <variable> = <value> TO <value [STEP <value]

In the following section, each of the Built-in commands will be defined and

illustrated. Some of the commands require numeric values for arguments. In this

case, either decimal or hexadecimal values may be used. Unless otherwise indi-

cated, all numeric arguments are assumed to be in hexadecimal. To specify a deci-

mal argument, use the prefix ".". If desired, the "$" prefix can be used to clar-

ify hex values. An arithmetic expression can be used anywhere a numeric value is

called for, except for disk drive numbers. Arithmetic expressions may be formed

using the usual operators, "+", "-", nan C79 cand | WAI, "™" is the remainder

operator. All expressions are evaluated left-to-right without any operator prece-

dence. The value entered may not exceed 65535 decimal or be less than -32768

decimal (including any intermediate point in the computation). The following

examples illustrate the evaluation of numeric expressions:

100 evaluates as 256 decimal (100 hex).
.100 evaluates as 100 decimal (64 hex).
B+ 10 evaluates as 27 decimal (1B hex). (Blanks are ignored in expressions)

1+.10#3 evaluates as 33 decimal (21 hex).

$1498/.256 evaluates as 20 decimal (14 hex).
4oBc \ 10041 evaluates as 177 decimal (BD hex).

Arguments which specify memory addresses may also specify a memory bank by

appending a :<bank> at the end of the argument where <bank> is the digit 0, 1, 2,

or 3. If a bank is not specified, memory bank 0 is assumed. Where two arguments

specify a range of memory addresses, only the first argument should specify a bank

since the end of the range is assumed to be in the same bank as the beginning. The

following illustrates the use of bank notation:

C000:1 Specifies address $C000 in bank 1 (the first display memory location).

0:2 3FFF Specifies a range of addresses from $0000 through $3FFF in bank 2

(applicable to commands that use address ranges).

2-7

TABLE 2-4: COMMAND EDITING CHARACTERS

Character Meaning

BACKSPACE Backspace 1 character

_— Backspace 1 character (see Note 3).
RUBOUT Backspace 1 character then erase character at new cursor position.

Forward space 1 character without erasing (see Note 3).

blank Erase character under cursor then forward space 1 character

CTRL-X Delete entire line (start line over).
fs Comment. Any characters after ";" are ignored.

! Command abbreviation character. See text.

RETURN End-of-command.
HOME Place cursor in upper left screen corner.

INSERT Enter insert mode. Characters will be inserted before the character

the cursor is on, pushing remaining text over to the right. Any

editing character except rubout clears insert mode.

DELETE Delete character under cursor and "close-up" remaing part of line.

SHIFT-HOME Erase screen and place cursor in upper left screen corner.

or Does not discard line (even though erased).

CTRL-L int.
CTRL-S Temporarily suspend output display (see Note 1).

CTRL-Q Resume suspended output display (see Note 1).
CTRL-C Command abort (during display) (see Note 1).
CTRL-Z End-of-File (for keyboard entry only).

CTRL-R Re-display entire present line starting at cursor position.

CTRL-W Delete from present cursor position to end-of-line.

CTRL-E Turn off/on echo of keyboard characters to CRT (see Note 4).

CTRL-B Recall a previously typed line (see note 2).
SHIFT- —» Jump cursor to last character of existing line.

SHIFT- <— dump cursor to first character of existing line.

NOTES FOR TABLE 2-4:

1. CTRL-S and CTRL-C are active only while a command or program is actually

printing text on the console.

2. Each CTRL-B recalls one line, beginning with the most recently entered

line. Recalled lines may then be edited using other keys in this table. The

number of lines which can be recalled depends on the length of the lines; about 8
to 15 average lines are usually retained. As new lines are entered, the oldest

lines are discarded. After the last recallable line has been displayed, the next

CTRL-B will "wrap around" to display the most recent line again. In this way if

you "overshoot" the line you wanted, you can just continue pressing CTRL-B till it

comes around again. You will find CTRL-B very useful!

3. Cursor-left and cursor-right are normally confined to the limits of the

existing line. You can "escape" from the current line position by using

ecursor-up or cusor-down when the cursor is at end-of-line. However, once you

escape from the present line, you cannot backup to change it unless you first

do a CTRL-R.

4, CTIRL-E is useful for entering commands when you do not want to "clutter"
the sereen. After CTRL-E, keys pressed do not show up on the screen. Depressing

CTRL-E a second time will re-enable echo. You can completely eliminate normal

CODOS screen activity and still enter commands by assigning channel 2 to N (the

nul? device) and using CTRL-E to eliminate keyboard echo.

2-8

TABLE 2-5: BUILT-IN COMMANDS

Command Page Purpose

ASSIGN 3-1 Display or alter channel assignments for I-0.
BEGINOF 3-2 Position channel to beginning-of-data.

BOOT 3-3 Boot-up CODOS (cold start).
BP 3-3 Define breakpoint address for machine language debugging.

CLOSE 3-4 Close-out operations on disk specified.

COMPARE 3-5 Compare two blocks of memory.
COPY 3-5 Copy memory block.
DATE 3-6 Set date.
DELETE 3-7 Delete file from disk directory.
DISK 3-7 Display attributes of disks.
DO 3-8 Execute a list of Monitor commands on‘a"batch" job file.

DRIVE 3-9 Designate the default drive.
DUMP 3-9 Display contents of memory.

‘ENDOF 3-10 Position channel to end-of-file.
FILES 3-11 List names of files on disk.
FILL 3-12 Fill block of memory with a constant.
FREE 3-12 Release channel if assigned.
GET 3-13 Load program into memory from disk.
GETLOC. 3-14 Display load addresses of loadable file.

ao 3-16 Begin execution of program in memory.
HUNT 3-17 Search for string of bytes in memory.
LOCK 3-18 Enable write-protect on disk file.

MSG 3-19 Print a message on a device or file.

NEXT 3-19 Resume execution of suspended program in memory.
ONKEY 3-20 Define function key legend and action to be taken.

OPEN 3-21 Open-up operations on a disk.
PROTECT 3-22 Enable hardware write-protect on system memory.

REG 3-23 Display or alter contents of 6502 registers.
RENAME 3-24 Change the name of a file.
RESAVE 3-25 Same as SAVE command except updates existing file.

‘SAVE 3-26 Save program, command, or memory image on a file.

SET 3-27 Set memory to value(s).
S¥c 3-28 Enable or disable Supervisor Call Processor (SVCs).
TYPE 3-28 Display or print contents of file.
UNLOCK 3-30 Disable write-protect on file.
UNPROTECT 3-30 Disable hardware write-protect on system memory.

NOTES FOR TABLE 2-5:

1, The underlined portion indicates the minimum allowable abbreviation for the

command (using "!").

2. Utility programs, which are very much like built-in commands, are discussed

in Chapter 4.

Bis See Chapter 3 and Appendix G for detailed descriptions of the built-in

commands.

CHAPTER 3.

BUILT-IN COMMANDS

See Appendix G for Syntax diagrams for all built-in CODOS commands.

COMMAND NAME: ASSIGN. Al

PURPOSE: To assign an input-output channel to a file or device, or to display all

current channel assignments.

<evice>
SYNTAX: ASSIGN | <channel>)<file> [<drive>] rrr)

ARGUMENTS:

<Channel> = desired channel number, 0 to 9.

<device> = single character device name.
<file> = file name desired. .
<drive> = disk drive number, 0 to 3. Defaults to current default drive, usually

0.

EXAMPLES:

ASSIGN

displays the current channel assignments. A typical display might be:

CHAN. 1 C

CHAN. 2 C
CHAN. 6 MYTEXT.T:0

which indicates that channel 1 and 2 are assigned to the Console, and channel 6 is
assigned to a file called MYTEXT.T on drive 0.

ASSIGN 6 C ; OUTPUT TO CONSOLE PLEASE.

assigns channel 6 to the system console device. Everything after the ";" character

is a comment.

ASSIGN 5 MYTEXT.T

assigns channel 5 to the disk file called MYTEXT.T on the default drive (usually

drive 0). The system responds to file assignments with either "NEW FILE" or "OLD
FILE" depending on whether or not the given file already exists. If you get "NEW
FILE" when you were expecting "OLD FILE", it probably means you misspelled the file
name. You can correct this by merely doing the assignment over, since assigning a

channel which is already assigned automatically frees the old assignment first.

CAUTION: CHANNELS 0, 1 AND 2 ARE USED INTERNALLY BY THE SYSTEM AND SHOULD NOT
BE REASSIGNED UNTIL YOU HAVE A THOROUGH UNDERSTANDING OF THE SYSTEM OPERATION!

ASSIGN 4 C 7 YOURS.A: 1

assigns channel 4 to the Console and assigns channel 7 to the file called YOURS.A

on drive 1. If YOURS.A does not exist, it will be created automatically and will
initially contain nothing. Files which contain nothing disappear automatically

when they are FREEd from their channel assignments.

3-1

NOTES:

1. Assigning a channel to a file always positions the file to beginning of

data, even if the file is already assigned to another channel and is not at begin-

ning of data.

2. More than one channel can be assigned to the same file or device.

3. The CODOS Monitor reads its input from channel 1 and outputs to channel 2.
These channels are both normally assigned to the Console. You can, however,

reassign these channels. If you have a sequence of Monitor commands that you

execute often, you can TYPE these commands onto a file, and then ASSIGN channel 1

to the file. CODOS will execute every command on the file and then automatically

reassign the console when End-of-File is encountered. The Console is also auto-

matically assigned if an error is detected. This kind of file is called a "Job

file" and has the extension ".J". The file called STARTUP.J is a special job file
which is assigned to channel 1 by the system when CODOS is booted up. Chapter 10

discusses STARTUP.J Jobs in some detail. The "DO" command also assigns channel 1
to a job file.

COMMAND NAME: BEGINOF. By

PURPOSE: To position a file associated with a given channel to beginning-of-data.

SYNTAX: BEGINOF (channel) eee

ARGUMENTS:

{channel} = desired channel number, previously assigned to a file.

EXAMPLES:

BEGINOF 5

positions the file presently assigned to channel 5 to beginning of data.

BEG! 789

repositions the files assigned to channels 7, 8, and 9 to beginning of data. You

will recall that the "!" character can be used to abbreviate any built-in command.

NOTES:

1. It is permissible to use the BEGINOF command on a channel which is assigned

to a device instead of a file. In this case, the command is ignored.

COMMAND NAME: BOOT. 601

PURPOSE: To re-boot the CODOS operating sytem from the disk in drive 0.

SYNTAX: BOOT

ARGUMENTS: None.

EXAMPLES:

BOOT

will cause CODOS to be reloaded and re-initialized from the disk in drive 0.

NOTES:

1. The BOOT command performs a jump to the ROM bootstrap loader. It does not

close any disks or perform any other action before doing so.

COMMAND NAME: BP.

PURPOSE: To set a program breakpoint for debugging purposes.

SYNTAX: BP [gaddr>}

ARGUMENTS: <addr>= address of first byte of instruction at which breakpoint is

desired.

EXAMPLES:

BP 420A

will set a breakpoint at address 420A. Following a GO or NEXT command, when

program execution reaches 420A, control will be returned to CODOS which clears the

breakpoint and then prints the contents of all registers (see REG command descrip-

tion for the format of the register printout). Up to 3 breakpoints may be set

simultaneously.

BP

clears all breakpoints.

NOTES:

{. BP works by temporarily replacing the op-code at the indicated location with

a BRK instruction. The original op-code is replaced when the breakpoint is

cleared.

2. Breakpoints may be placed anywhere, even at BRK instructions or Supervisor

Calls (SVCs). They should only be placed at the op-code byte of an instruction.

3. Breakpoints may be set in any memory bank by following the address with a

":" and the bank number.

4, Breapoints should not be set in system memory or in I/O drivers.

5. The register printout is preceeded by the keyword "BP" to idicate that entry

into CODOS was through a breakpoint.

3-3

COMMAND NAME: CLOSE. ¢ |

PURPOSE: To conclude operations on a disk

drive or powering-down the system.

SYNTAX: CLOSE [Grive> al

ARGUMENTS:

in preparation for removing it from the

<Grive> = desired disk drive number, 0 to 3. Defaults to drive 0.

EXAMPLES:

CLOSE

closes drive 0. The default for the close command is always drive 0.

CLOSE 0 1

closes drives 0 and 1. The disks may then be removed.

CAUTION: YOU SHOULD ALWAYS CLOSE EVERY DISK BEFORE REMOVING THE DISK FROM THE DRIVE
OR POWERING DOWN.

While CODOS is running, it maintains certain tables and buffers in memory which
may need to be copied back to the disk before the disk is removed. CLOSEing the
disk assures that this operation is done. This updating is needed only when writ-
ing to disk, not when just reading it. Normally, if you forget to enter the CLOSE
command before removing a disk, it will not matter, since all system programs
update the disk automatically when they terminate. However, if a program which
wrote to a disk file was aborted, terminated abnormally, or did not FREE the chan-
nel assigned to the file, then the file on disk may not be complete unless the disk
is CLOSEd before removing the disk. Therefore it is a good practice to always
CLOSE a disk before changing disks or powering down. Using reset to interrupt
CODOS during disk operations is not recommended since it may leave the system in an
undefined state. Programmers should note that it, is considered good practice for

x programs to FREE channels assigned to files before terminating, so that successful
operation will not depend on the user remembering to CLOSE the disk.

NOTES:

1. It is permissable to close a file which is already closed. In this case,
no action takes place.

344

COMMAND NAME: COMPARE. (a) mi

PURPOSE: To determine if two blocks of memory are identical.

SYNTAX: COMPARE <from> <to><dest >

ARGUMENTS:

<from> = starting address for first block.

<to> = ending address for first block.

<dest.> = starting address for second block.

EXAMPLE:

COMPARE 2000 2FFF 4000

will compare every byte of the block of memory from $2000 to $2FFF to the corre-

sponding bytes in the block from $4000 to $4FFF. If the blocks are identical,
CODOS will display:

SAME.

If the blocks differ, the address and content of the first byte which differs will

be displayed and the comparison will terminate. For the example command above, a

possible result might be:

2006=30, 4006=90

which indicates that the first 6 bytes of the blocks match, but the seventh bytes

differ as shown.

NOTES:

1. Only the first differing byte is displayed.

2. The values displayed are in hex.

3. The comparison may be between different memory banks. The default bank for

the <dest.> argument is the same bank as was specified for (from) +

COMMAND NAME: COPY. co)

PURPOSE: To copy a block of memory to another memory location.

SYNTAX: COPY <from><to><dest >

ARGUMENTS:

<from> = starting address of block to be copied.

<to> = ending address of block to be copied.

<dest> = desired starting address of destination of copy.

EXAMPLES:

COPY 100 2FF 2000

copies $0100 through $02FF to $2000 (through $21FF).

COPY 2000 2000+.80 2002

3-5

copies $2000 through $2050 to $2002 (through $2052).

NOTES:

1. The block may be any size.

2. The destination for the copy can overlap the block being copied. This fact

can be used to advantage to "open up" or "close up" space in memory.

3. Copying can be performed in either direction (higher address to lower

address or lower address to higher address).

4, The content of one memory bank may be copied into a different memory bank.

The default bank number for the dest. argument is the same as was specified for
the from argument.

5. CAUTION: Unlike the SET or FILL commands, COPY does not check for reserved
memory violations, nor does it verify the bytes as they are deposited. The reason
for this is explained in the description of the SET command.

COMMAND NAME: DATE. oOAl

PURPOSE: To set the creation date for any new files generated.

SYNTAX: DATE [<dd-mmm-yy >]

ARGUMENTS:

<dd-mmm-yy> = desired date.

“EXAMPLE:

DATE 08-AUG-80

sets the date field to "08-AUG-80". Any files created thereafter before powering
down the system, re-booting, or issuing another DATE command, will be dated accord-

ingly. The date field for files is displayed by the DIR Utility.

NOTES:

1. The first 9 characters (after any leading blanks) are used for the date.
No format checking is provided, so you may freely use other forms such as "1/24/81"

if you wish.

2. The date is assigned to a file at its initial creation. It is not altered
by any changes to the file, including writing, truncating, or renaming it. How-
ever, since COPYF and TYPE (with a file name for a second argument) actually create
anew file, these new files will have the current date, not the original. There-
fore you can effectively change the date on any file by using the date command,

copying the file and deleting the original.

3. The DIR Utiltiy can be used to ascertain the creation date of a file.

4, When CODOS is booted up, it will prompt for the initial date entry by the

user. If the user replies with a carriage Return, the default date field,
"RUNDATED*" will be used.

3-6

COMMAND NAME: DELETE. DE!

PURPOSE: To remove a file from the disk.

SENTAX: DELETE <file>[: <arive>] ...

ARGUMENTS:

file>= file name to be removed.

<drive>= disk drive number, 0 to 3. Defaults to the current default drive,

usually 0.

[9 6 983 9 EH HE EH HE

CAUTION: USE THE DELETE COMMAND WITH CARE; THERE IS NO PROMPT FOR A "VETO"

BEFORE THE FILE IS REMOVED, SO TYPE CAREFULLY! ALL IMPORTANT FILES SHOULD BE
LOCKED IMMEDIATELY AFTER THEIR CREATION TO PREVENT INADVERTANT DELETION BY AN

ERRONEOUS DELETE COMMAND! FOR GENERAL FILE DELETION, YOU SHOULD CONSIDER USING THE

"KILL" UTILITY PROGRAM DESCRIBED IN SECTION 4 INSTEAD, WHICH REQUIRES VERIFICATION

OF EACH FILE TO BE DELETED.

9 9 98 9 9 3 9 9 I 9 9 A EH

EXAMPLES:

DELETE MYDATA

deletes the file MYDATA.C from the default disk (usually drive 0).

DELETE PROG_1A:1 Y3 HIS_STUFF.T

deletes three files, one from drive 1 and two from drive 0.

NOTES:

1. It is recommended that the KILL Utility be used in lieu of the DELETE command

in an interactive environment. The DELETE command is more convenient to use ina
batch job, however, and does not use the memory area reserved for utilities

($B400-BDFF) to operate.

2. Once a file is deleted, it cannot be recovered.

3. Backup copies of important files should always be maintained on any disk

system.

COMMAND NAME: DISK. ot!

PURPOSE: To display the number of files, remaining space, and volume serial number

on all open disk drives.

SYNTAX: DISK

ARGUMENTS: none.

EXAMPLE:

DISK

3-7

will display the number of files, volume serial number, and free space on all oven

drives. A typical display might be:

11 FILES:0 (VSN=2001), 890K FREE
108 FILES:1 (VSN=0003), 72K FREE

which indicates that drives 0 and 1 are open, with 11 files on drive 0 and 108
files on drive 1. There is about 890K free (1K = 1024 bytes; therefore about
911,360 bytes remain available) on drive 0, and the serial number specified when
that diskette was last formatted is 2001. The number of "K" free is a decimal
number.

NOTES:

1. Disk space is allocated and displayed in blocks of 2K bytes on single-sided

drives and 4K bytes on double-sided drives.

COMMAND NAME: DO.

PURPOSE: To execute a list of CODOS Monitor commands stored on a "Job" file.

SYNTAX: DO <file> :<drive>

ARGUMENTS:

<file> = desired text file of commands to be executed by CODOS.

<drive> = optional disk drive number, 0 to 3, which defaults to the current

default drive, normally drive 0.

EXAMPLES:

DO MAILINGLIST.J

will cause CODOS to read and execute every line of the file MAILINGLIST.J on drive

0 as a Monitor command. When end-of-file is reached, CODOS will resume reading

input from the Console.

NOTES:

1. If an error is detected by CODOS while executing a command from the "job" file,

an error message will be issued in the ususal manner showing the offending command

from the file, and CODOS will accept input from the Console. The remainder of the

commands on the job file will be ignored.

2. Normally the Editor is used to create a new Job file (see the MTU Screen Editor

manual for details). Suppose you used "EDIT ODDJOB.J:1" to create the following

file:

GET ODDSUBS ;LOAD MY ORIGINAL ODD SUBROUTINES
SET 2245=4C 68 2B ; MAKE PATCH FOR STRANGE STUFF
ASSIGN 7 OLDDATA.D ;DATA FILE NEEDED DURING PROCESSING
ASSIGN 8 P ;PRINTER
ODDERPROG ;EXECUTE MAIN PROGRAM
FREE 7 ;DONT NEED DATA FILE ANYMORE

3+8

It is considered good practice to place comments on your command lines, so you will

remember what the job does when you later look at the file. After exiting from the

Editor,

DO ODDJOB.J:1

will cause CODOS to execute the six commands stored on ODDJOB. This is called

"batch" execution of a "Job" file.

3. The DO command produces the same effect as assigning channel 1 to the "job"

file.

4. DO commands cannot be nested. You may place a DO command in a command file,

and control will transfer to the indicated file. However, when End-of-File is

reached on the new file, control will revert to the Console and will not resume

with the next command after the DO on the first file.

COMMAND NAM! DRIVE. OR!

PURPOSE: To designate the default disk drive number to be used when files are

referenced without a drive number being explicitly given.

SYNTAX: DRIVE <drive>

ARGUMENTS:

<drive> = desired drive number, 0 to 3.

EXAMPLE:

DRIVE 1

sets the default drive to drive 1.

NOTES:

1. The default drive is 0 when the system is booted up or Reset.

2. The DRIVE command only affects the drive for file name references. It does

not affect the default drive for OPEN, CLOSE, FILES, etc.

3. The drive number selected using the DRIVE command is referred to as the

"default drive".

COMMAND NAME: DUMP. ()!

PURPOSE: To display the contents of a block of memory in hexadecimal and as ASCII

characters.

SYNTAX: DUMP <from> |<to>}\<device>
<channel>

ARGUMENTS:

3-9

(from) = desired starting address.
(to) = desired ending address (see note 1 below). Default is from +15.

(device) = desired device on which to display the output. Defaults to the

console.

(channel) = desired channel on which to display the output.

EXAMPLES:

DUMP 1000

displays 16 bytes of memory starting at $1000.

DUMP 1000 101A

displays memory starting at $1000 and will include memory through $101A. The

resulting display might look similar to:

0 12°30 4. 5. 16° 7 8 9ABCODEF
1000 34 77 D7 4B 20 00 56 78 4F 4B 20 46 45 4c 4c 41 0 Aw... Vx OK.FELLA
1010 55 67 09 42 59 45 00 03 03 03 20 00 00 00 10 20 Ug.BYE..-..

Of course, the actual values displayed will depend on the contents of memory. The

sixteen rightmost characters of each line are the ASCII characters for the line,

with each non-displayable character converted to ".", including blanks.

DUMP 1000 1000+.500 P

dumps 500 (decimal) bytes starting at $1000. The display will be output to the the

printer.

NOTES:

1. A complete line is always displayed even if the to address is not an even

multiple of 16 bytes. Sufficient complete lines will be displayed to ensure that

the to address is included in the display.

2. As with any command, CTRL-S can be used to temporarily suspend the console

display and CTRL-Q to restart it. CTRL-C can be used to abort the DUMP.

3. The righthand portion of each line of the dump displays "." in place of

each non-printable character, including blanks. Characters considered printable

are any of the 96 printable ASCII characters except blank, provided bit 7 is oO.

4, If desired, the number of bytes displayed per line can be altered to accom-

modate narrower or wider devices. See Appendix E.

5. Each memory location dumped is actually read twice so be careful when dump-

ing 1/0 register contents that may be affected by the very act of reading.

COMMAND NAME: ENDOF. Et

PURPOSE: To position a file associated with a given channel to End-of-File.

SYNTAX: ENDOF <hanneD ...

ARGUMENTS:
\

<Channel> = desired channel to position.

3-10

EXAMPLES:

ENDOF 5

positions the file assigned to channel 5 to End-of-File.

END! 6 4

positions the files assigned to channel 6 and channel 4 to End-of-File.

NOTES:

1. If the channel specified is assigned to a device and not a file, the com-

mand is ignored.

2. The ENDOF command can be used (with caution) to concatenate files or extend
files. See the TYPE command for details.

3. Don't forget that ASSIGN always re-positions a file to beginning of data;

therefore assigning another channel to the file after using ENDOF will negate the

effect of the ENDOF command.

COMMAND NAME: FILES. Fi}

PURPOSE: To display the name of every file on a disk.

SYNTAX: FILES (Kdrive>]...

ARGUMENTS:

<drive> = selected disk drive number, 0 to 3. Default is always drive 0.

EXAMPLES:

FILES

displays the names of all the files on drive 0, five names per line.

FILES 1

displays the names of all the files on drive 1.

NOTES:

a FS The DIR utility program can be used to display more information about

selected files. See Chapter 4.

2. As with any command, CTRL-S can be used to temporarily suspend the Console

display and CTRL/Q to restart it. CTRL-C can be used to abort the command.

3. Built-in Monitor commands are not listed by the FILES command, because they

are a part of the operating system, CODOS.Z.

24

COMMAND NAME: FILL.

PURPOSE: To fill a block of memory with a constant.

{ "haracter>"

SYNTAX: FILL <from> <to> [=] } <value>
'<character>'

ARGUMENTS:

<rom> = desired starting address to be filled.

<to> = desired ending address for fill operation.

<value> = numeric constant to be deposited into each byte of the memory block.

<character> = single ASCII character to be deposited into each byte of the

memory block.

EXAMPLES:

FILL 1200 12FF 0

fills every byte between $1200 and $12FF inclusive with $00.

FILL C000:1 FBFF 73

fills the entire MTU-130 display memory with $73 bytes (displays vertical bars).

FILL 1000 1000+.100 '"*

fills $1000 though $1064 with $22 (an ASCII ").

NOTES:

1. As each byte is deposited in memory, the result is verified by the system.

An attempt to fill ROM, reserved-memory, defective memory, or non-existent memory

will abort the command at the point where the error occurred.

2. The FILL command may be used to fill memory locations reserved for CcoDOS

if an UNPROTECT command has been issued. Indiscriminant FILLing can lead to system

crashes.

3. Either single or double quote marks may be used to delimit the character,

but must be the same on both sides.

COMMAND NAME: FREE. |

PURPOSE: To disassociate an Input-Output channel from a device or file.

SYNTAX: FREE <¢hannel>

ARGUMENTS...

<channel> = desired channel number to free, 0 to 9.

EXAMPLES;

3-12

FREE 6

frees channel 6 from its prior assignment.

FREE 8 4

frees both channel 8 and channel 4.

NOTES:

1. It is permissable to free an unassigned channel.

2. FREE is the inverse operation of ASSIGN.

COMMAND NAME: GET. G!

PURPOSE: To load a memory image from a disk file.

SYNTAX: GET <file> fF Grivé>|[= clest> ...]

ARGUMENTS:

<filé& = desired file name to be loaded into memory. See note 1 below.

<drive> = drive number, 0 to 3. Defaults to the default drive, normally 0.

<dest > = destination starting address for load to be used in lieu of the from

address which was specified when the file was saved.

EXAMPLES:

GET MYPROG

loads the file called MYPROG into memory. It will be loaded at the address which

was specified at the time the file was created using the SAVE command. The Program

Counter will be set to the entry point address which was saved with the file.

GET OLD_PROG.X:1=700 =1B00

will load the file OLD_PROG.X from drive 1 into memory. The first block (which is

whatever size was SAVEd on the file) will be loaded starting at address $0700,

regardless of what load address was specified when the file was ereated. The

second block (if it exists) will be loaded starting at address $1B00. Any addi-

tional blocks (should they exist) will be loaded at the addresses specified during

the creation of the file.

NOTES:

1. A file may be loaded into a different memory bank from which it was saved.

2. The file to be loaded must be a loadable format file such as is generated

by the SAVE command. An attempt to load a text file or other type file will result

in an error. The format of a loadable file is described in Appendix B.

Se The file may consist of several non-contiguous blocks of memory, all of

which will be loaded. See the SAVE command description for details.

4, If fewer (dest. arguments are supplied than there are blocks in the file

to be loaded, the remaining blocks are loaded starting at the addresses given when

they were saved.

3-13

5. If more (dest) arguments are supplied than there are blocks in the file to

be loaded, the extra arguments are ignored.

6. GET always sets the Program Counter, P, to the value of the Entry point

which was specified when the file was saved.

7. Specifying (dest.) does not affect the value used for the Entry point. The

Program Counter will still be set to the value specified as the Entry point when

the file was saved.

8. Naturally, the GET command with (dest.) specified does not relocate any

machine language code; it merely loads the memory image at a different location.

Therefore most programs will not run properly if loaded at a different address than

was intended.

9. The GETLOC command can be used to ascertain the values of the entry),

(from), and (to) arguments which were used when the file was saved.

10. The GET command will not load a file into areas of memory reserved for

CODOS unless an UNPROTECT command has been given. In addition, it will not load

directly into memory below address $0200, unless the system has been UNPROTECTed.

This encourages the good programming practice of reserving page O for scratch

storage and page 1 for the stack. Be aware however that locations $0200-$06FF are

used for system parameter storage and should not be overwritten by a GET command

unless it is specifically desired to change these parameters.

COMMAND NAME: GETLOC. GETL!

PURPOSE: To display the Entry point, Starting load address, and Final load address

for a file previously generated by the SAVE command.

SYNTAX: GETLOC <file> [<@rivé>]

ARGUMENTS:

<file>= desired file name.
<drive= disk drive number, 0 to 3. Defaults to the current default drive,

usually 0.

EXAMPLES:

GETLOC VMT

will display the memory block and entry point used by the program VMT.C on drive oO.

A typical display might be:

WMT.C=5014 5000 587C

which indicates that VMT loads into addresses $5000 through 587C inclusive, and

execution starts at $5014.

GETLOC SEGS.X : 1

will display the load attributes of SEGS.X on drive 1. Assuming that SEGS.X was

saved with three distinct blocks of memory (see SAVE command), the display might

typically be:

3-14

SEGS.X=2000 2000 342D
1300 13DD

1780 17A8

which indicates that issuing a GET SEGS.X:1 command (or executing SEGS.X:1) would

result in memory images being loaded into $2000 through $342D, $1300 through $13DD,

and $1780 through $17A8. If SEGS.X:1 is executed, the program will be entered at

$2000.

NOTES:

1. If the file specified was not generated by the SAVE command or other pro-

gram generating loadable-format files, an error will result.

2. When using GETLOC to determine memory usage by a program, remember that

programs loaded may use additional scratch RAM other than that actually loaded.

COMMAND NAME: GO.

PURPOSE: To begin execution of a machine-language program in memory.

SYNTAX: GO [<trom>]

ARGUMENTS:

<from> = desired starting address. Defaults to current value of the Program

counter (as displayed by the REG command).

EXAMPLES:

Go

begins execution at the current address of P. The current value of P can be dis-

played using the REG command.

GO 1200

begins execution of a machine language program at $1200.

GO 101A:3

executes a program starting at address $101A in bank 3 (assuming expansion memory

is present in bank 3).

NOTES:

1. Upon entry to the program, the registers will be set as displayed (or

defined) by the REG command, except the stack will be discarded (that is, S=FF).

2. The program is actually entered by a JSR instruction, so that a correspon-

ding RTS will return control to the system. If a program re-enters CODOS in this

manner, a subsequent REG command will display the status of all registers except P

at the time of the RTS. This is useful for debugging subroutines since the GO
command can be used to enter the subroutine, and the routine will return to CODOS
on completion with the contents of the registers displayable. An RTS will return

eontrol to CODOS even from another memory bank other than bank 0.

3. The difference between the NEXT command and the GO command is that the
NEXT command preserves the stack and enters the program via a jump (thus effective-
ly continuing execution), whereas the GO command discards any stack (sets stack

pointer to FF) and enters the program via a JSR. EXCEPTION: AGO command issued

using SVC number 13 (see Section 6) will not discard the stack.

4, If the 4from} argument specifies a memory bank other than 0, the program

is entered with the program bank and the data bank set to the specified bank

number.

3-16

COMMAND NAME: HUNT. #1}

PURPOSE: To search a block of memory for a string of bytes.

" hard..."
SYNTAX: HUNT <from><€o> }<value> Suis

' <char>...'
ARGUMENTS:

<froip>= starting address for the search.

<to>= final address for the search.
<Char>= an ASCII character.
<valué>= a numeric value, 0 to $FF. In a string of values, one (and only one)

value can be replaced by the wildcard, "?", which matches any single byte.

EXAMPLES:

HUNT 2000 2400 'CoDOS'

will search memory from $2000 though $2400 inclusive and list the address of all
occurrances of the ASCII character string, "CODOS". If a match is made for all 5
bytes, the starting address of the matching string is displayed, and the search
resumes at the next byte.

HU! 200:2 200+.100 4c

will search from $0200 to $0264 in memory bank 2 for the byte $4C.

HUNT 2320 4FFF 20 ? 03

will search from $2320 to $4FFF for a $20 followed by any byte followed by $03.
This might be useful for searching for a JSR ($20) opcode to a subroutine which you

know is somewhere in page 3 but you don't know exactly where.

HUNT 3000 3300 OD 'NOW IS THE TIME’

searches for a $0D byte (a carriage return) followed by the ASCII string "NOW IS
THE TIME", between 3000 and 3300.

HUNT 200 4480 'GO' ? 'NEW'

searches from 200 to 2280 for "GO" followed by any single byte followed by "NEW".
This would match such strings as "GO3NEW", "GO NEW", "GO,NEW" and "GOTNEW".

NOTES:

1. HUNT reports all occurrences of the target byte-string in the region. A
CNTRL-S can be used to > Eemporarily suspend the display and CNTRL-C can be used to

abort the command.

2. Only one "?" wildcard can be used, and it cannot be the first byte of the
target byte string (that would be meaningless).

3. Aton

only match a

le an ASCII string enclosed in quotes is not a wildcard and will
in memory.

4. The largest byte-string permitted is 11 bytes.

5. When searching for a character string, if the region being searched in-

cludes the CODOS line-input buffer, you will always get a match at that location,

because you are matching the string you typed in. However, if you DUMP the speci-

fied address, you will not see the desired string, because typing the DUMP command

altered the content of the line-input buffer.

COMMAND NAME: LOCK. 1!

PURPOSE: To enable the software write-protect for a file.

SYNTAX: LOCK <file>[, <drive>] ...

ARGUMENTS:

<file> = desired file name.

<drive> = disk drive desired. Defaults to the current default drive, usually

drive 0.

EXAMPLES:

LOCK INVENTORY.T

sets the write-protect for the file called iNVENTORY.T on drive 0. This will not

affect other files on the disk.

Notes:

1. The LOCK command is used to protect files against INADVERTENT destruction.

It is not intended to provide any kind of file security. For floppy disk systems,

the most appropriate method of securing information is physical security of the

disk.

2. The LOCK command will protect files from DELETE, SAVE, and RENAME com-

mands, and from SVCs and languages which write or truncate the file. It will NOT

protect files from the FORMAT utility program, nor from other software using the

disk controller directly.

3. A backup disk should always be maintained for all important files on any

floppy disk system.
=

3-18

COMMAND NAME: MSG. Al

PURPOSE: To print a message over a specified channel.

SYNTAX - Single line form: MSG <char> <fext> CR
Multi-line form: MSG <char>ACR

<text> CR ...
<text> ACR

ARGUMENTS:

<han> = channel number from 0 to 9

<text> = any printable ASCII text except the "a" (caret) character.
CR = ASCII Carriage Return control character (not the letters "CR")

EXAMPLES:

MSG 2 Starting assembly.

will print "Starting assembly." followed by a carriage return over channel 2, which

is usually assigned to the Console display. This would be useful, say, in a batch
job file to keep the operator informed of the progress of the job.

MSG 6“
This represents the results of applying
a smoothing function to the data.A

will print the two line message above as two lines on whatever is currently

assigned to channel 6. This might be useful for identifying the output froma

program that does not identify it itself for some reason.

NOTES:

1. Be sure to remember the final "A" character in the multi-line form or the

message will never terminate.

COMMAND NAME: NEXT. WW!

PURPOSE: To resume execution after a break or interrupt or to initiate execution of

a machine language program in memory.

SYNTAX: NEXT [<from>]

ARGUMENTS:

<from>= starting address. Defaults to current value of the Program Counter (P),
as displayed by the REG command.

EXAMPLES:

NEXT

will begin execution at the address currently stored in the P register.

NEXT 223B

will begin execution at $223B.

NOTES:

1. The values of all registers upon entry to the program will correspond to

_ the values shown or set by the REG command. This includes the stack pointer.

2. The program is actually entered via a JMP instruction, so that an RTS
instruction will return to the address on the top of the stack, not to the CODOS

monitor.

3. The program will be entered with the same program and data bank setting as

was in effect the last time CODOS was entered.

4, The difference between GO and NEXT is that GO enters the program with a JSR

after discarding any stack (i.e., sets S=FF), whereas NEXT enters via a JMP with

the stack preserved. The primary advantage of the NEXT command is it enables a

user to continue execution after a breakpoint has been encountered.

COMMAND NAME: ONKEY. on!

PURPOSE: Define a function key legend and associated substitution string.

SYNTAX: ONKEY eee #> [Gesena>[steing> all

ARGUMENTS:

<key #> = a function key number between 1 and 8 inclusive.
<legend> = a string of 8 or fewer characters enclosed in quotes which is to be

displayed in the specified legend box.

<string> = a string of 31 or fewer characters in quotes which is to be entered

into the input line buffer when the specified function key is

pressed.
<term>= the numeric value of the termination character to be entered into the

input line buffer following the istring}. If omitted, a carriage

return will be entered. If bit 7 of the character is set, the

dstring} will not be echoed to the console.

EXAMPLES:

ONKEY 3 "PAYROLL" "PAYROLL LASTWEEK.D THISWEEK .D"

will display the legend PAYROLL in the box at the bottom of the screen associated

with function key 3. Following this, any time the operator presses the f3 key, the

string PAYROLL LASTWEEK.D THISWEEK.D will be entered into the input line buffer

just as if it was typed in by the operator. Since no termination was specified,

the default value of $0D (ASCII carriage return) is entered next which causes the

line to be executed immediately as a CODOS command. The string is also displayed

(echoed) on the console display.

3-20

ONKEY 8 ' ASM' 'ASM DEVELOPMENT: 1 L=' 0

will display the legend ASM in the rightmost function key box approximately -en- tered (because of the two leading blanks). When the operator presses f8, the string "ASM DEVELOPMENT:1 L=" will be entered into the input buffer and also displayed on the console. Since a termination of $00 (ASCII NUL) was specified, the cursor will be positioned just beyond the last "=". The operator would presum- ably type in a file name and a carriage return to execute the complete command or use editing keys to alter the command.

ONKEY 1 'PRINTER' 'ASSIGN 6 Pt 8D

will display the legend PRINTER in the leftmost function key box.
key would execute the CODOS command "ASSIGN 6 Pp". Since bit 7 of the termination character is set, the substitution string will not be shown on the console output
which essentially "hides" what the fi key does in terms of CODOS commands.

Pressing the f1

ONKEY 3

will clear the legend for function key 3.

ONKEY

will clear all of the legends and substitution strings.

NOTES:

1. If the <legend> is longer than 8 characters, the excess is ignored.

2. If the ¢string>is longer than 31 characters, the excess is ignored.

3. Either single quotes or double quotes may enclose the legend and substitu- tion string but must be the same on both sides.

4, The substitution string may contain only one line.
desired, you can prepare a Job file with the
command as the substitution string.

If multiple lines are
multiple lines and then specify a DO

COMMAND NAME: OPEN. @/}

PURPOSE: To declare a disk ready for access by the system.

SYNTAX: OPEN [<@rive>] ...

ARGUMENTS:

<Grive> = disk drive number to be opened, 0 to 3. Defaults to drive 0.

EXAMPLES:

OPEN

opens the disk in drive 0 for operations.

Oo!

opens drive 1 for subsequent operations.

3-21

NOTES:

1. Every disk must be OPENed prior to performing any command or operation on

it (except FORMAT). The disk must be in the drive and the door closed before

typing OPEN. Failure to open a disk before accessing it will result in an error

message; if drive 0 is not open, an error number will be displayed without a

message, since the system gets the error messages from a disk file (consult Appen-

dix A).

2. The system requires that an OPEN disk be present in drive 0 at all times

with a valid copy of the operating system on it. In addition, any user programs or

data may also be on the disk in drive 0. Most Monitor commands are overlays which

are loaded into memory from disk as needed; therefore an open disk in drive 0 is

essential. Generally, the disk in drive 0 should only be closed when exchanging it
for another disk or powering down the system. Certain Utility programs such as the

single-drive copy utility open and close drive 0 automatically.

3. Unlike many other systems, it is not necessary to open or close individual

files when using CODOS. It is only necessary to OPEN each disk as it is inserted,

and CLOSE each disk before it is removed from the drive, or before powering down.

4, See the description of the CLOSE command for more details on OPEN/CLOSE

considerations.

5. The disk in drive 0 is automatically OPENed by the system when it is
"booted" up.

6. OPENing a disk which is already OPEN is permissible.

COMMAND NAME: PROTECT. f \,

PURPOSE: To enable the memory-protect hardware on the upper 8k block of memory on

the disk controller board (addresses $E000-$FFFF in bank 0) and enable the
reserved-memory checking for SET and FILL commands.

SYNTAX: PROTECT

ARGUMENTS: none.

EXAMPLE:

PROTECT

NOTES:

1. The CODOS system normally "comes up" in protected mode.

2. In protected mode, the system will not allow any SET or FILL command into

the portion of page 0 reserved for CODOS, nor into the stack nor into addresses

$E000-$FFFF on the disk controller.

3. The effects of PROTECT are nullified by an UNPROTECT command.

4, PROTECT and UNPROTECT do not affect the disk or the effect of LOCK and

UNLOCK commands.

3-22

COMMAND NAME: REG. RL

PURPOSE: To display or alter the contents of the user's 6502 registers.

__ |"(character) "
syntax: REG |(reg. desig.) [=| {(value)

'(character)'J |

ARGUMENTS:

(reg. desig.) = register name to be altered, A, X, Y, F, S, or P.

value) = desired numeric value or numeric expression.

<character) = desired ASCII character.

EXAMPLES:

REG

will display the contents of the registers.

REG A=0

sets the A register to $00.

REG X .65 Y="B" A = 10

sets the X register to $41, the Y register to $42, and the A register to $10.

NOTES:

1. The REG command without arguments displays the user's registers in the

format illustrated below:

.e.e--Current Program Counter (P)

° e..-eCurrent Program Bank

. + «e+.esCurrent Data Bank

. + © eesee--Contents of memory at P through P+2 in hex

P=1BiF:0/0 (201A17) A=2A X=05 Y=00 F=32 S=FD

Contents of accumulator (A). *

Contents of X reg....

Contents of Y reg......6- oe .

Contents of Flags(F).......

Current Stack pointer(S)....

3-23

The individual bits in the Flags (F) register display are the same as the

hardware Processor Status Word, as described below:

~N.V. eB Desi Tsa, Bhal Cig

. ooeee Carry

. cece ences Zero result

a i ms . . wetsecses «+e.-Lnterrupt disable

.-Decimal mode

. . . cece cece ee eceeeeeeesbreak command

. . cece e cece cence eceseeveve undefined

- Overflow

rere rrr eee eccecceeceee Negative result

2. Either single or double quotes may be used to enclose the character when

setting a register to an ASCII character, but the same type of quote must be used
on both sides of the character.

3. The "=" between the register designator and the value is optional and in no
way affects the meaning of the command.

COMMAND NAME: RENAME. &EV!

PURPOSE: To change the name of an existing file.

SYNTAX: RENAME (file) [Grive)] (newfile)

ARGUMENTS:

(file) = the existing file name.
drive) = disk drive number for the existing file. Defaults to the current

default drive, usually 0.

(newfile) = desired new file name.

EXAMPLES:

RENAME JUNK GARBAGE

changes the name of file JUNK.C on drive 0 to GARBAGE.C.

3-24

RENAME MYNEWTEXT.T :1 MYOLDTEXT

changes MYNEWTEXT.T on drive 1 to MYOLDTEXT.C. Since no extension was given for
the new file name, ".C" was assumed.

COMMAND NAME: RESAVE. kes!

PURPOSE: To replace an existing file with a program or memory image(s).

SYNTAX: RESAVE (file) [: (arive)| [=<entry) | (tron) [= Gest >| CEO): sca

ARGUMENTS:

(file) = desired file name.
(drive) = desired disk drive, 0 to 3. Defaults to the default drive, usually 0.
(entry) = entry point desired. Defaults to from
(from) = starting address for the block of memory.
(dest.) = address at which the block is

GET commands. Defaults to (from).
<to) = final address of the memory block.

to be loaded into memory on subsequent

EXAMPLE:

RESAVE DOIT 200 2E3

saves the contents of memory locations $0200 through $02E# inclusive on the file
named DOIT, replacing whatever was in file DOIT previously. If the new memory
image is larger than the existing contents of the file, the file size will be
increased automatically. If the new memory image is smaller, the file size will be
reduced. Please refer to the description of SAVE below for further explanation.

NOTES:

1. The RESAVE command performs exactly the same function as the SAVE command
except that if the specified file already exists, it will be replaced. The SAVE
command would give an error under that condition.

2. If the specified file does not exist, there is no difference between RESAVE
and SAVE.

3. The RESAVEd file will be rewritten in the same blocks on the disk as the
original. This can be useful if it is desired to patch certain position sensitive
system files such as CODOS.Z itself.

4, You may resave a file which is larger than the file being replaced without
harm. CODOS will allocate additional space as needed.

3-25

COMMAND NAME: SAVE. 3/

PURPOSE: To save one or more blocks of memory on a file.

SYNTAX: SAVE <file> [:<drive>] <éntry>|<trom> Fxdest >] <td> ...

ARGUMENTS:

<file> = desired file name.
<drive> = desired disk drive, 0 to 3. Defaults to the default drive, usually 0.

<entry> = entry point desired. Defaults to <from> S

<from> = starting address for the block of memory.
<dest>> = address at which the block is to be loaded into memory on subsequent

GET commands. Defaults to <from>.
<to> = final address of the memory block.

EXAMPLES:

SAVE DOIT 200 2DF

saves the contents of memory locations $0200 though $02DF inclusive on a file

called DOIT.C on drive 0 (by default). Since no optional arguments were specified,

the entry point will be saved on the file as $0200, the same as the starting
address of the block. DOIT is now a User-Command, so subsequently typing DOIT will
cause the block to be loaded from disk into memory at $0200, and execution begun at

$0200.

SAVE RALPH _PROG.C:1 = 2424 2000 20FE 340 3A0

saves a file called RALPH_PROG .C on drive 1. The file contains two memory blocks,

the first from $2000 to $20FE, and the second from $0340 to $03A0. The entry point
is $2424. Subsequently typing a RALPH _PROG:1 command will cause the two blocks of

memory to be re-loaded from disk, and program execution begun at $2424.

SAVE SUBPKG.X 400=2000 400+.100

saves 100 decimal bytes of memory on a file called SUBPKG.X, starting at $0400.
Since a dest. address was specified, a subsequent GET SUBPKG.X command will cause

the memory block to be loaded into address $2000 and up instead of the $0400

address at which it was saved.

SAVE DISP_IMAGE.G C000:1 FBFF

saves the entire current screen image of the MTU-130 display on a file.

NOTES:

i. The existence of the "=" in the command indicates the existence of one of

the optional arguments <entry> or <dest>. Pay careful attention to the position
the arguments.

2. When using <dest>, note that no relocation of any possible address

references is made; the memory block is still exactly as saved. Therefore speci-
fying <dest.> is not generally a satisfactory method of relocating machine language

programs.

3-26

3. The <entry> point does not have to reside inside any of the saved blocks.

4, The number of blocks saved on a single file is limited only by the number

of <from> <to> arguments you can fit on the command line.

5. Bank notation may be used on the <from> and <dest > arguments. The

<entry> must not specify a bank number, but will be understood to always reside in

the same bank as the first block SAVEd.

6. The value FFFF or .65535 may not be used as the <to> argument.

COMMAND NAME: SET. SF].
Sa ee °

PURPOSE: To set the value of memory locations.

"Gharacter> ... " }
SYNTAX: SET <from> [=] } <yalue>

"geharacter>...' \

ARGUMENTS:

<from>= address at which to deposit the first value.
<valué> = numeric value to be deposited.
<character> = an ASCII character to be deposited.

EXAMPLES:

SET 2000= 1B

sets address $2000 to $1B.

SET 2006 "ABC"

sets $2006 to $41 (ASCII "A"), $2007 to $42 (ASCII "B"), and $2008 to $43.

SET 1200 80-.10 " " 80-.20 '

sets $1200 to $76, $1201 through $1203 to $20 (ASCII blank), $1204 to $6C, and

$1205 to $22 (an ASCII double-quote character).

Notes:

1. The “s=" is optional and has no effect on the meaning of the command.

2. As each byte is deposited in memory, it is verified by CODOS. If reading

the byte back from memory results in a bad compare to the value deposited, an error

message is issued and the command aborted.

3. Addresses are checked for validity before depositing each value. If an
attempt is made to set Reserved memory, an error message will be issued, unless an

UNPROTECT command was issued previously.

4, Occasionally it may be desired to set values into several adjacent I-0

ports in a single command. The SET command generally can't do this since the

verify may fail. One way to solve this is to SET the desired values elsewhere in
memory and use the COPY command to actually install the values into the port

addresses, since COPY has no validation or range checking.

3-27

COMMAND NAME: svc. SU!

PURPOSE: To enable or disable SVCs (upon subsequent entry to user program).

SYNTAX: SVC ort>|

ARGUMENTS:

<orf> = any non-blank argument. Defaults to no argument.

EXAMPLES:

svc

will cause SVCs to be enabled upon subsequent entry into any user program.

SVC OFF

will cause SVCs to be disabled upon subsequent entry into any user program.

NOTES:

1. The status of the SVC enable determines what action takes place when a BRK

($00) instruction is encountered in a user program. If disabled, control returns

to the operating system Monitor and the register contents are displayed. If ena-

bled, control is passed to the SVC processor, as discussed in Chapter 5.

2. Dumping memory location $EE will not necessarily show the current SVC

status since it is not set until a user program is entered.

36 The SVC command does not load the SVC processor into memory. If the

STARTUP.J file has not loaded the SVC processor automatically, then it must be

loaded by using a GET SVCPROC.Z command. Using SVCs without having the SVC

processor loaded results in unpredictable behavior.

COMMAND NAME: TYPE. TJ!

PURPOSE: To display, print, or create a text file.

<devicé> <dest.device> a
SYNTAX: TYPE <file> :<drivé> Gest.film> :<driv>

<channel> <dest.channel> i) i

ARGUMENTS:

<Gevice>= single character source device name.

<file> = desired file name to type.
<drive>= desired disk drive, 0 to 3. Defaults to the current default drive,

ususally 0.
<channel> = desired pre-assigned source channel number, 0 to 9.
<dest.device>= desired output device name. Defaults to Console ("C").
<dest.file>= desired file to receive output from TYPE.
<dest.channel>= desired pre-assigned channel to recieve output from TYPE.

EXAMPLES:

3-28

TYPE MYSOURCE.A

will display the file MYSOURCE.A on drive 0 on the Console.

TYPE MYPROG.L P

will type the contents of the file MYPROG.L on the printer.

TYPE C NEW.T

will accept input from the console keyboard and put it ona file called NEW.T.

This is one way to create a text file.

TYPE 5 STUFF.T:1

will accept input from the file or device assigned to channel 5 and output it to

the STUFF.T file on drive 1.

NOTES:

i The first argument specifies the source for the TYPE command; the second

argument is optional and specifies the destination.

2. The second argument defaults to the Console ("C") device.

3. When the source for the TYPE command is the console keyboard, CNTRL-Z is
used to enter End-of-File and therefore terminate the TYPE command.

4, If a file name is given for either argument, the file will be automatically

positioned to Beginning-of-Data before typing starts. However, if a channel is
used for the argument, no positioning takes place. This fact can be used to advan-

tage to copy parts of a file or concatenate files. For example:

ASSIGN 6 OLDTEXT.T
ENDOF 6 e
TYPE C 6

ean be used to append lines onto the existing file OLDTEXT.T from the Console.

However,

TYPE C OLDTEXT.T

would overwrite and replace the existing file, so be careful!

5. The TYPE command always frees the channels used when it terminates, unless

the command was aborted.

6. If the TYPE command is aborted using CNTRL-C, the channels it uses will

remain assigned. You may use the ASSIGN command to check this.

7. The TYPE command assumes that the file to be typed will consist of ASCII
characters. If you attempt to TYPE an executable file, you will see garbage

displayed.

3-29

COMMAND NAME: UNLOCK. wu}

PURPOSE: To disable the software write-protect for a file.

SYNTAX: UNLOCK <file>{[i<drive>] ...

ARGUMENTS:

<file> = desired file name.
<Gdrive>= desired disk drive, 0 to 3. Defaults to the current default drive,

usually 0.

EXAMPLES:

UNLOCK VALUABLES

removes the write-protect from the file called VALUABLES.C on drive 0.

UNLOCK GOODIES.T:1 GOODIES.A:1

removes the write-protect from both files specified.

NOTES:

1. It is permissable to UNLOCK a file which is not LOCKed.

COMMAND NAME: UNPROTECT. (jn!

PURPOSE: To disable the hardware write-protect on the top 8K of RAM on the disk
controller board (addresses $E000-$FFFF in bank 0) and disable the system reserved-
memory checking for SET and FILL commands.

SYNTAX: UNPROTECT

ARGUMENTS: none.

EXAMPLE:

UNPROTECT

NOTES:

1. Once UNPROTECTED, the SET and FILL commands will be able to freely over-
write normally-reserved areas of memory including the part of page 0 used by CODOS,
page 1, and the System RAM.on the disk controller. Naturally, casual abuse of this
facility is likely to cause strange and invariably unpleasant results.

2. The GET command can load into System RAM or page 0 or 1 after an UNPROTECT
command. It is the user's responsibility to ensure that blocks loaded into these
areas will not conflict with CODOS memory usage (see Appendix F).

3-30

CHAPTER 4.
CODOS UTILITY PROGRAMS

Utility Programs differ very little from built-in commands from the user's
viewpoint. Utilities are invoked from the Monitor by merely typing the name of the
desired Utility followed by any required or optional arguments, just as is the case
for the built-in commands. However, the Utilities have the following distinctions:

1. The names of the Utility programs appear in the disk directory just like

any user command, and can be deleted or renamed if desired.

2. The Utility programs execute in the System Utility area of RAM from $B400-

BFFF. Some utilities also use a large buffer for copying disk files (called the

"Large Transient buffer"). The standard location of this buffer is A000-B3FF in
bank 0, but it may be altered. Please refer to Section 10 and Appendix E for the

location of the system parameter that governs the buffer location and size.

3. Utility names cannot be abbreviated using "!".

The standard Utilities that would be used by nearly all CODOS users are listed

in Table 4-1, and are described in the following section. Many additional util-

ities with more specialized functions are listed in a separate utilities manual.
Several other utility programs for system generation are described in section 10.

TABLE 4-1. UTILITY PROGRAMS

Name Function

DIR Display file attributes for selected file(s), using "wildcard" name
matching. :

COPYF Copy file(s) on a multiple-drive system.

COPYF 1DRIVE Copy file(s) on a single-drive system.

FORMAT Initialize a new or existing disk; test and bypass any defective

sectors; copy the operating system if desired.

KILL Deletes files on disk using "wildcard" name-matching.

UTILITY NAME: DIR.

PURPOSE: To display the attributes of selected files.

SYNTAX: DIR <pattern>...

ARGUMENTS:

<pattern> = desired file name, optionally using "wildcard" characters as de-
scribed below:

* matches any string of characters terminated by (but not including) we

2? matches any single character.

- (dash) matches any string of characters terminated by and including "_"
(underline). See note 2 below.

The default pattern is "*.?" on the current default drive, ususally 0.

EXAMPLES:

DIR

will list the attributes of all the files on drive 0. A typical display might be:

coDOS.Z :0 L 24-JAN-81 $0018C0

AIMEXT.Z 2:0 L 24-JAN-81 $0001BF
SVCPROC.Z :0 L 24-JAN-81 $00018F
COPYF .C :0 L 24-JAN-81 $000082
MYTEXT.T :0 - *UNDATED* $0010CD

The first column is the file name and extension. The ":0" indicates the drive.
The next column either contains "-" or "L". The "L" indicates that the file is
locked. The next column is the creation date for the file. The final column is
the file size in hexadecimal bytes.

DIR *.T

will display the names of all files on drive 0 with a ".T" extension.

DIR #*.?:1

will display all files on drive 1.

DIR INVENTORY.? ORDERS.?

will display all files on drive 0 named INVENTORY or ORDERS with any extension.

DIR DATA_-VS_Z.D

would display the attributes of file names such as DATA X_VS z.D or DATA_Y_VS_Z.D,

but not DATA_X_VS_Y.D Paki ee

DIR OLD*.A

will display the attributes of any file starting with "OLD" with an ".A" extension.

4-2

NOTES:

1. In order to display the attributes of files on drives other than 0, the
pattern argument must be given. For example, typing "DIR :1" will cause CODOS to
attempt to execute the program called DIR on drive 1. If the DIR Utility exists on
drive 1, then it will be executed, and since no arguments are given, it will
display the attributes of all files on drive 0, which is probably not what was
intended. To display all files on drive 1, the correct command is "DIR *.2:1".

2. A pattern of the form: *JAN.? will not match any file names. This is
because the "*" is defined as matching any string terminated by a "." and that is
clearly not possible within the confines of legal file names. If you wish to adopt
a naming convention that uses a suffix to specify a class and a prefix to disting-
uish within the class (as the above pattern implies), use an " " (underline)
character in the file name to separate the prefix from the suffix and then use the
"-" (minus) character in the pattern specification to represent any prefix. For
example, -JAN.? will find SALES JAN.D and PROJECT_JAN.D.

3. DIR will not correctly show the length of a file which has just been writ-
ten until the channel assigned to it has been FREEd or the disk CLOSEd. If you see
a file with a length of 0, check to see if it is still assigned.

4-3

UTILITY NAME: COPYF.

PURPOSE: To copy files on a multi-drive system.

SPECIAL HARDWARE: At least 2 disk drives are required by COPYF. See COPYFIDRIVE if
you have only 1 disk drive.

SYNTAX: COPYF <patterm> [:<drive>] [<pewdrivé>]

or

COPYF <file> E<drive>] [<newri1g> E <hewariveS)|

ARGUMENTS:

<patterg>= file name with "wildeard(s)". "Wildcards" recognized are:

* matches any string terminated by (but not including) ".".
? matches any single character except ".".

- matches any string terminated by (and including) "_". See note 7.

The default pattern is "*.?" which matches all files.

<file> = desired file name to copy.

<Grivé>= disk drive where file is to be found. Defaults to the current default

drive, ususally 0.

<newfil@ = desired new file name desired. Defaults to (file).

<newdrive> = desired destination disk drive, 0 to 3. Defaults as follows:

if_drive =... then default newdrive =...

1} 1

1 0
2 3
3 2

EXAMPLES:

COPYF

copies all files on the disk in drive 0 to drive 1, except files which already

exist on drive 1. The system will display the names of the files, for example:

CODOS.Z:1 ALREADY EXISTS.
SYSERRMSG.Z:1 ALREADY EXISTS.
MYDATA.D COPIED.
GO_INVENTORY.C COPIED.
FORMAT.C COPIED.
AD_DRIVER:1 ALREADY EXISTS.

indicating that three of the files were not copied because they already existed on

drive 1, and that the remaining three files were copied.

4-4

COPYF TURKEY

copies the file TURKEY.C from drive 0 onto drive 1. The new file on drive 1 will

also be named TURKEY.C. No other files will be copied.

COPYF *.G:1

copies all files ending in ".G" on drive 1 to drive 0, unless they already exist on

drive 0.

COPYF NEW*.? 2

copies all files which have names starting with "NEW" on drive 0 to drive 2, unless

they already exist on drive 2.

COPYF DATA.D:1

copies file DATA.D from drive 1 to drive 0.

COPYF CLONE NEWCLONE:0

duplicates file CLONE on drive 0, with a name change. After the command, both

CLONE and NEWCLONE will be on drive 0. Except for the name and creation date, they
will otherwise be identical.

COPYF STUFF.T:3 OLDSTUFF.T:1

copies file STUFF.T from drive 3 to drive 1 and changes the file name on the drive

1 file to OLDSTUFF.T.

COPYF ?777.C

copies all files with exactly four characters in the name and a ".C" extension from

drive 0 to drive 1, except files which already exist on drive 1.

NOTES:

1. If an attempt is made to copy a specific file name (that is, without any

wildcards), and that file already exists on the destination disk, then an error

message will be given (uniess the system "re-save OK" flag has been set as de-

scribed in Appendix E). However, if a pattern is given (that is, with one or more

wildeards), then file names which match but already exist on the destination disk

are simply ignored, and the Utility execution continues. This allows users to

easily copy all files which do not already exist on the destination disk by simply

typing COPYF without arguments.

3. You may not use wildcards when changing the file name during a COPYF.

4, COPYF should not be used to copy the operating system, CODOS.Z. Copying

the operating system is accomplished using the FORMAT program.

5. COPYF uses the Large Transient Buffer during the copy operation (see

Appendix F for location).

6. Files created by COPYF are always unlocked, regardless of whether the
original file was locked or not.

7. Please see note 2 in the DIR command description for additional information

about wildcards.

45

UTILTIY NAME: COPYFiDRIVE.

PURPOSE: To copy files onto another disk in a one-drive system.

SYNTAX: COPYF1DRIVE

ARGUMENTS: none.

EXAMPLE:

COPYF 1DIRVE

executes the single-drive file copier. The Utility is completely interactive, and

will prompt:

PUT SOURCE DISK IN.
FILE (OR CR IF DONE)?=

Type in the name of the file to be copied. The Utility will prompt:

PUT DEST. DISK IN,
CR WHEN READY.?=

Remove the source disk from the drive and insert the desired disk to receive the
copy of the file. This disk must have been previously formatted. When the new

disk is in and the door is closed, depress carriage Return. Usually at this point
the system will prompt:

PUT SOURCE DISK IN.
FILE (OR CR IF DONE)?=

which indicates your file has been copied and you may now copy another file. if
you do not want to copy another file, put whichever disk you want to use (old or

new) into the drive and hit carriage Return. If you wish to continue copying other

files, insert the desired source disk and type the file name.

Oceasionally some files will be too long for the COPYF1DRIVE Utiltiy to copy in

a single pass. In this case, the Utility will prompt:

PUT SOURCE DISK IN.
CR WHEN READY.?=

when you depress Carriage return, it will copy the remainder of the file. Several

passes may be needed for files much larger than the Large Transient Buffer.

NOTES:

1. COPYFiDRIVE should never be executed from a job file.

2. Increasing the size of the Large Transient Buffer, as described in Section
10, will increase the file size which can be copied in a single pass. This is
strongly recommended since the standard system uses a relatively small buffer suit-
able for dual-drive systems.

3. "Wildcards" are not available for COPYF1DRIVE.

4. Do not use COPYF1IDRIVE to attempt to copy the operating system onto a disk.

Only the FORMAT Utility can correctly copy the operating system.

5. Files created by COPYF1IDRIVE are always UNLOCKed initially.

4-6

Bloc es IK
UTILITY NAME: FORMAT. er 1624

PURPOSE: To erase and re-format a disk for CODOS use, test and bypass defective

disk sectors, and copy the operating system files to the disk.

SYNTAX: FORMAT Is [= (interleave) || [r = (skew) |

ARGUMENTS:

(interleave) = optional sector-to-sector interleave factor. See note 2 below.
If "S" is specified without a numeric argument, S=3 is assumed. Defaults to S=2 if

ommitted completely.

(skew) = optional track-to-track skew factor, See note ~ below. Defaults to
T=$C.

EXAMPLE:

FORMAT

initiates the interactive FORMAT Utility. The Utility will display different
prompts, depending on whether you have a single-drive or multiple-drive system. On

a Multiple Drive system, the program prompts:

WARNING: FORMAT WILL IRREVOCABLY
ERASE EVERYTHING ON DISK IN DRIVE 1.
ARE YOU READY (Y¥/N)?=

Any reply starting with "Y" or a carriage return will be interpreted as a "YES"

reply. Anything else is a "NO" reply and aborts the command. Before replying make
sure the disk you want to format is in drive 1. A "YES" reply will cause FORMAT to
erase all tracks on the disk, write new timing information on the tracks, and test

the directory track for bad sectors. All this takes about a half a minute (about

one minute for double-sided disks). It will then prompt:

WANT TO TEST FOR BAD SECTORS (Y/N)?=

If you want to test every sector on the disk, type "YES". Testing a single-sided

disk takes about 3 minutes to complete. Normally you will probably not want to

test diskettes unless you have doubts about the integrity of the diskette. The

test procedure consists of writing random data into every byte of every sector on

the disk, reading it all back and comparing to the data written. If any errors

eccur, the sector will be bypassed automatically during file allocation by the

system and not used. A message will indicate what track and sector was bad and

oypassed. If the error occurs in the directory or system overlay portion of the
disk, the Utility aborts with the message "DISK UNUSABLE", since directory sectors

cannot be bypassed. See Note 3.

The next prompt issued by FORMAT is:

DISK VOLUME SERIAL NO. (VSN)?=

Enter any hexadecimal number desired between 0 and FFFF. This Volume Serial Number
is written in the directory area of the disk and is intended to uniquely identify
each disk. Therefore you will normally want to give every disk a different number.
You may also want to write the VSN on the label portion of the disk using a soft

magic marker for visual identification purposes. The DISK command displays the

VSN. You may assign any VSN you wish. The next prompting message is:

4-7

WANT TO COPY DRIVE 0. SYSTEM (¥/N)?=

If you want to have a copy of the operating system on the newly-formatted disk,
reply "YES". Normally you will want to copy the system onto all new disks.
multiple drive systems, it is only necessary for the
operating system image on the disk. Therefore if you only plan to use the new disk
in another drive, you can reply "NO". The advantage of this is that you gain about
20K of additional free space on the disk. Normally this small saving in space does
not justify the added potential inconvenience of being unable to "boot up" or run
the disk in drive 0.

on
disk in drive 0 to have an

When the copy operation is complete, the Utility issues the message:

NEW DISK IS NOW OPEN.

The FORMAT Utility is completed. To ascertain which files were copied by the
FORMAT program, type:

FILES 1

You may want to use the COPYF Utiltiy to copy additional files. In particular, you
will probably want to copy the COPYF Utility and the FORMAT Utility, and any device
drivers (such as PRINTDRIVER.Z) needed by the STARTUP.J file. These are not copied
by FORMAT. At this point, the disk in drive 1 can be used to "boot-up" the opera-
ting system at any future time by inserting it in drive 0 and executing the boot
loader.

For single-drive systems, a similar dialog will be initiated by FORMAT, except
that you will be prompted to change disks for copying the system. Be sure to
remember to remove the old diskette and insert the new one (the "DEST." diskette)
when prompted to do so, before replying "YES" to "ARE YOU READY?". You will not be
given the option of not copying the system, since every disk must have it ina
one-drive system. Use COPYFIDRIVE to copy the additional files desired upon
completion of the Format utility.

NOTES:

Ne FORMAT uses the Large Transient Buffer in memory.
Appendix F, for its default location. The buffer
described in Chapter 10.

See the Memory Map,

location can be altered as

2. The optional "S" option on the FORMAT command alters the "skew" of the
sectors on the disk from the standard alternate-sector skew to a specified value.
The meaning and purpose of this option is discussed in Appendix D. This argument
should normally be ommitted. The "T" option specifies the number of physical
sectors which will intervene between logically adjacent sectors when stepping from
one track to the next. Normally this argument should not be specified.

3. When FORMAT discovers a defective sector during testing, it is normal for it
to report the same defective sector twice and possibly three times.

4. If defective sectors are reported

used to boot-up the system. It still can

present) on a multi-drive system however.

anywhere on track 0, the disk cannot be

be used as a data-disk (no system

4-8

UTILITY NAME: KILL.

PURPOSE: To selectively delete files matching a given name with "wildcard" charac-

ter matching.

SYNTAX: KILL (pattern)

ARGUMENTS:

(pattern) = desired file name, optionally containing the following "wildcard"

characters:

* matches any string of characters terminated by (but not including) "."

? matches any single character.

- (dash) matches any string of characters terminated by and including "_"

(underline). See note 1 below.

EXAMPLE:

KILL MYFILE

executes the KILL Utility to delete file MYFILE.C on drive 0. If the file is not

found, no action takes place; otherwise, the KILL Utility displays:

ENTER CR OR Y TO DELETE, N TO KEEP FILE:
MYFILE.C:0'?=

This prompt affords you an opportunity to make sure you got the file you really

wanted. If you wish to delete the file, enter either a carriage return or a word

starting with Y followed by a carriage return. Any other response will not delete

the file.
—

KILL *.G :1

will display the names of all the file names with ".G" extensions on drive 1 and

let you approve or veto the deletion for each file individually.

KILL ???0LD*.?

will display the names of all the files with "OLD" for the fourth through sixth

letters of the name, and let you kill or keep each file.

NOTES:

1. A LOCKed file cannot be KILLed.

2. Once a file is KILLed, it cannot be recovered. Therefore exercise eaution

and be certain you have the right file and drive.

3. Please see note 2 in the DIR command description for additional information

about wildcards.

4-9

CHAPTER 5.

INTERFACING USER-WRITTEN ASSEMBLY-LANGUAGE PROGRAMS TO CODOS

INTRODUCTION

This section introduces methods by which user-written assembly-language

programs may communicate with the outside world through the CODOS operating system,
and take advantage of various utility functions provided by the system. Using the

funetions described here can greatly reduce program development time and effort.

Most operating systems provide a degree of support for assembly-language

programming by making available the addresses of certain system subroutines which

the user can call to perform I-O or other functions. For example, to output a

character to the console, you might put the ASCII character into the A register and
call the driver subroutine for the console display device. CODOS does not use this

method, but instead provides amore powerful tool called the Supervisor Call

Instruction (SVC). The SVC concept is not new; SVCs are found in various forms on
many large mainframe computers.

The following discussion assumes a knowledge of 6502 assembly language pro-

gramming on the part of the reader.

HOW SVC'S WORK

The CODOS implementation of the Supervisor Call capability consists of a BRK

instruction ($00) followed by a one-byte numeric code which tells the system what
function is required. The code numbers are listed in Table 5-1. Effectively, the

SVC is a lot like a JSR (Call Subroutine) instruction, except that it is two bytes
long instead of three, and the second byte is not an address, but a code which
tells what pre-defined system subroutine is to be called. Individual SVCs are
explained in detail in Chapter 6.

Why are SVC's better than a straightforward JSR? There are several reasons:

1. SVCs are address-independent. This is by far the most important advantage

of SVCs. It means that future system upgrades which may alter the addresses of
actual system routines will not affect the SVC numbers, and therefore will not
adversely affect programs using SVCs. It also means that, for example, a program

on an AIM-65 computer with CODOS at $8000 can be transported to an MTU-130 system
and run without modification. If subroutine calls were used instead, it would be
necessary to patch all the JSRs to the system routines before execution.

2. SVCs use less memory. Two bytes are cheaper than three.

3. SVCs preserve the values in registers. All registers are restored to
their condition upon entry to the SVC when returning to the calling program, except

when returning values to the calling program. This saves the programmer a_ lot of

unnecessary saving and restoring registers.

4, SVC's are easier to debug. If an error is detected by the system while
processing an SVC, the program will abort and CODOS will display the exact address

of the offending Supervisor Call, the values of all the registers at the time of
the SVC, and an error message explaining the difficulty. Illegal or unimplemented
SVCs are also trapped in the same manner.

5-1

TABLE 5-1: CODOS SVC NUMBERS

SVC# Description Pass Regs. Returns Regs.

QO Show registers, Enter CODOS Monitor. - -
1 Enter CODOS Monitor. - =

2 Output inline message (See text) -
3 Input byte from channel. xX A, F
4 Qutput byte to channel. A,X -

5 Input line from channel. X,U5 A,Y,F
6 Output line to channel. X,Y,U6 ~
7 Output string to channel. X,Y,U6 -
8 Decode ASCII hex to value. Y,U5 A,Y,F,U0

9 Decode ASCII decimal to value. Y,U5 A,Y,F,U0

10 Encode value to ASCII hex. Y,U0,U6 Y
11 Encode value to ASCII decimal. Y,U0,U6 b4

12 Query buffer address & passed argument. - U5,U6,Y

13. Execute a CODOS Monitor command. U5 (See Chapter 6)
4 Query channel assignment. x A,F

15 Read record from channel. X,U1,U2 F,U1,U2
16 Write record to channel. X,U1,U2 F
17 Position file to beginning. x =
18 Position file to end-of-file. x -
19 Position file. X,U7 U7

20 Query file position. xX X,U7

21 Assign channel to file or device. X,A,U3 A,F
22 Free Channel. xX =
23 Truneate file at present position. ix -

24 Define interrupt vector. uo =

25. Define error-recovery vector. uo -
26 Restore default error recovery. - =

27 + Enter 16-bit Pseudo-processor. - F
28 Query CODOS Version. - ‘ASX;Y.
29 Query file status. Y,U5 A,Y,U3,F
30 Query date. Y,U6 Y,U6

INITIALIZATION AND PARAMETER PASSING

In order to use SVCs, the user program must first enable the Supervisor by

setting the SVC Enable flag, SVCENB (address $00EE), to $€0 (bit 7 must be set to
1). If SVCs are not enabled, any BRK instruction will simply return to the Monitor
with a display of the location of the BRK and register contents. Note that the

SVCENB flag must be set to $80 by the user program, or by the SVC command. Setting
$EE to $80 from the Monitor using the SET command will not work. The recommended
procedure is to have the program set the SVC enable flag.

Usually, some type of argument needs to be passed to the Supervisor and/or
returned to the user program from the Supervisor. The method for passing arguments

5-2

is defined for each SVC individually, and may be done in three possible ways:

1. Arguments may be passed or returned in 6502 registers.

2. Arguments may be passed in one or more "Pseudo-Registers" in page zero.

3. Arguments may be passed "in-line", immediately following the SVC.

Before proceeding further, an example program will illustrate SVC usage.

Example Program i: Displaying a text message.

The first SVC we shall examine in an example is SVC 2, which outputs a message

over a channel. This is a very unusual SVC in that the argument is passed in-line.

However, it is so frequently needed in programming that it deserves our first

attention.

PROBLEM: Write a program to display the message "HELLO THERE." on the console.

SOLUTION:

SVCENB 7 $EE ;SVC ENABLE FLAG LOCATION

3
#2 $2000 3PROGRAM ORIGIN

GREET LDA #$80
STA SVCENB ;ENABLE SVCS
BRK jSVC...
-BYTE 2 3+-+-#2 = OUTPUT INLINE MESSAGE...
-BYTE 2 3+--OVER CHANNEL 2...
-BYTE 'HELLO THERE.'
-BYTE 0 30 TERMINATES MESSAGE TEXT
RTS ;RETURN TO MONITOR OR CALLING PROGRAM
-END

EXPLANATION:

The program begins by enabling SVCs (note: once enabled, SVCs remain enabled

until disabled by writing $00 into SVCENB; it is advisable to disable SVCs when not

needed). The BRK instruction together with the first .BYTE 2 pseudo-instruction

comprise the SVC, and Table 5-1 tells us that an SVC 2 is used to display an inline

message. The second .BYTE 2 tells the System what channel to output the message
on. Channel 2 was selected for our example because it is assigned to the console
display by default. Of course, it could be re-assigned to any device or file.

Following the channel is the text of the message, which can consist of up to 254

bytes and is terminated by a $00. The $00 also is the last argument of inline
code. The System will output the message over channel 2 and then return control to
the instruction following the $00 byte; in this case, the RTS which terminates the

program.

Remember that SVCs do not alter any registers except to return values to the
calling program; since SVC 2 does not need to return values, no registers are

altered. This is a big benefit, since it means that you can put inline messages

anywhere you please in your program for debugging purposes without having to worry

about side effects to the registers. Note that SVC 2 does not output any carriage

return automatically; if you want to output control characters, you may include

them explicitly in the message, as illustrated below.

5-3

Example Program 2: Display message on a new line.

PROBLEM: Repeat Problem 1, above, but start the message on a new line.

SOLUTION:

SVCENB = $EE
;

He $2000
GREET LDA #$80

STA SVCENB_ ; ENABLE SVCS
BRK
BYTE 2 3SVC 2 = INLINE MESSAGE
«BYTE 2 3+.-ON CHANNEL 2
BYTE 1 3 13=$0D=ASCII CARRIAGE RETURN
«BYTE 'HELLO THERE.'
BYTE 0 3 TERMINATOR
RTS

EXPLANATION:

The only change to this program from Example Program 1 is the addition of the

"BYTE 13" at the start of the message, which produces a carriage return. Any

control characters desired can be embedded in the message in this manner, except
ASCII NUL (because NUL = $00, the message terminator.).

There are three common programming errors which you should avoid when using

SVC 2 to generate messages:

1. Forgetting to enable SVC's (in which case the program will simply return

to the Monitor with a display of the registers when the first BRK instruction is

encountered).

2. Forgetting the CHANNEL argument (which usually results in an error message

of "ILLEGAL CHANNEL NUMBER" or "CHANNEL NEEDED IS UNASSIGNED").

3. Forgetting the zero-byte terminator for the message, (which often results
in your program going into "hyperspace" after displaying the message).

PASSING ARGUMENTS TO THE SVC PROCESSOR IN 6502 REGISTERS

The example programs above passed their arguments to the Supervisor in-line. A

much more common method of parameter-passing is the use of the 6502 registers. The
following example illustrates register parameter passing.

Example Program 3: Character Input-Output.

PROBLEM: Write a program which reads a stream of bytes from channel 5 until a"."

character is encountered, or end-of-file is reached. Display a message indicating

which of these two events occurred. Assume channel 5 has been previously assigned

to a valid file or input device.

5-4

SOLUTION:

SVCENB = $EE

3
STRMIN LDA #$80

STA SVCENB
NEXTCH LDX #5 ;CHANNEL 5 FOR INPUT STREAM

BRK
BYTE 3 ;SVC #3 = INPUT CHARACTER FROM CHAN (X)
BCS EOFENC :BRANCH IF END-OF-FILE ENCOUNTERED
CMP #. ;ELSE EXAMINE CHARACTER INPUT
BNE NEXTCH :IF NOT ".", READ MORE
BRK
-BYTE 2 ;ELSE DISPLAY INLINE MESSAGE
-BYTE 2 :...ON CHANNEL 2
«BYTE 13,'"." ENCOUNTERED.',O ;GIVE MESSAGE

RTS

EOFENC BRK
-BYTE 2 ;SVC 2= INLINE MESSAGE

BYTE 2 3++-ON CHANNEL 2
«BYTE 13,'E-O-F ENCOUNTERED.',O ;GIVE MESSAGE

RTS

EXPLANATION:

This program illustrates a number of aspects of SVC usage. The line labelled

NEXTCH is used to load the channel number desired into X. The Supervisor expects

to find the channel number in register X when the SVC is processed, as is detailed

in Chapter 6. SVC 3 returns the character read in the A register, and sets the

earry flag only if End-of-File was encountered. End-of-File is an important

concept. The End-of-File flag (the carry flag) is set by the SVC processor only if
no more characters can be read from the selected channel. If the input channel is

the console keyboard, this means that CNTRL-Z was entered (the CNTRL-Z character is

not returned in A). If channel 5 was assigned instead to a file, it simply means

that the previous character was the last character in the file. The programmer

should always check for End-of-File when doing any kind of input operation, so that

programs are device-independent. No error will occur if you attempt to read beyond
end-of-file; the result in A is just not meaningful. It is the Programmer's

responsibility to test the carry on every input operation and take appropriate

action if it is set.

In our example, once we have ascertained that E-O-F was not encountered, the

character received from channel 5 is checked to see if it isa".". If not,

another character is read. Once one of the two terminal conditions is met, an SVC

2is used to issue a message to the console (channel 2) indicating which event

occurred.

FIGURE 5-2 PSEUDO-REGISTERS oo

Actual
Address Pseudo-Register Name

! . !

$00B0 ! REGISTER UO !

! !

! A !

$00B2 ! REGISTER U1 !

t 7 !

! . !

$00B4 ! REGISTER U2 !

! A !
! e !

$00B6 ! REGISTER U3 !
! A !
! . !

$00B8 ! REGISTER U4 !

! . !

! . ui

$O00OBA ! REGISTER U5 ! (Input Buffer Pointer)
! S !

! . !

$00BC ! REGISTER U6 ! (Output Buffer Pointer)
! A !
! . . ! (File

$00BE REGISTER U7 ! Position)

NOTES FOR FIGURE 5-2:

1. All values are passed in the usual 6502 fashion with low byte first.

2. The memory locations shown are not used by the system for any purpose

whatsoever except processing user SVCs. This memory can therefore be freely used
by the user.

3. The SVC enable flag is at address $EE.

PASSING ARGUMENTS IN CODOS PSEUDO-REGISTERS Fd

Sometimes it is necessary to pass addresses or other 16-bit information to the

SVC processor. The 8-bit A, X, and Y registers of the 6502 are inadequate for this
purpose, so a set of eight Pseudo Registers (hereafter called P-registers or simply
P-regs) are provided in zero-page, as shown in figure 5-2. P-regs UO through U6

are each 16 bits wide; U7 is 24 bits wide, and is used for file positioning, as we

shall see later. Note that if SVCs are not enabled, these P-regs are not used for
any purpose whatsoever by the system, and may be freely used as ordinary program
memory by application programs. Values to be passed to the SVC processor are
installed in these P-registers in the usual manner for memory. The SVC processor

5-6

expects to find certain addresses or values in specific P-registers, depending on

the SVC. For example, most I-O0 functions (except single character I-0) use U5 to

hold a pointer to an input buffer and U6 to hold a pointer to an output buffer.

Each SVC description tells what P-registers are used, if any. Certain SVCs return

information to the application program in P-regs. For example, SVC 12 ($0C) does
not pass any P-regs to the SVC processor, but the system returns U5 and U6 to the

application. The addresses returned are pointers to the system input and output

line buffers, respectively.

Example Program 4: Line-Oriented I-0.

Most programs need to deal with input and output of strings or lines of

characters. Several SVCs are provided for support. Applications programs will

make heavy use of the 6502 (Indirect),Y addressing mode in these applications. In
general, P-register U5 (for input) or U6 (for output) must be initialized to point
to the start of a buffer containing the current line of interest. The Y register

is used to index the particular character of interest within the line. Normally,
the System Input and Output buffers are the most convenient to use, since an SVC 12

will automatically setup the proper addresses in U5 and U6, but the programmer may

select any location for the buffers. The System buffers are sufficiently large for

lines of up to 192 characters. The following problem illustrates line-processing.

PROBLEM: Write a program to copy lines of input text from channel 5 to channel 6

until an End-of-File is encountered. Assume Channel 5 and 6 have been given
appropriate assignments.

SOLUTION:

SVCENB $EE

US $BA 3P-REG U5
U6 = $BC 3P-REG U6

3
NCHARS Ha¥41 ;TEMP SAVE FOR COUNT OF CHARACTERS

COPY56 LDA #$80

STA SVCENB ;ENABLE SVCS
BRK

-BYTE 12 3SVC 12 = QUERRY SYS. BUFFER ADDRESSES
NEXT LDX #5 ;CHANNEL 5 FOR INPUT

BRK

«BYTE 5 ;SVC #5 = INPUT LINE TO BUF. AT (U5)
BCS EOFENC ;BRANCH IF END--OF-FILE ENCOUNTERED
STA NCHARS ;ELSE SAVE CHARACTER COUNT

LOOP LDA (U5),¥ ;COPY CONTENT OF INPUT BUFFER...
STA (U6),Y ;...TO OUTPUT BUFFER
INY
cPY NCHARS

BNE LOOP 3-.-UNTIL WHOLE LINE COPIED
LDX #6 ;CHANNEL 6 FOR OUTPUT
BRK

-BYTE 6 ;SVC #6 = OUTPUT LINE AT (U6)
JMP NEXT j;REPEAT FOR NEXT LINE

EOFENC RTS 3 END

EXPLANATION:

You may have wondered why byte-oriented I-O was not used to copy the file
since this would be substantially simpler. One reason is that the line-input SVC
(SVC #5) supports the line editing characters such as BACKSPACE and RUBOUT from the
Console, but the byte-input SVC (SVC #3) does not. Thus using line input gives
more flexibility when the input channel is assigned to the keyboard (Console). SVC
number 3 (byte input) returns control to the application program immediately when a
key is depressed; SVC number 5 does not return until an entire line terminated by a

carriage return is entered. The edited line is returned to the user program in the
buffer pointed to by U5, and the number of characters in the line is returned in

the 6502 A register. This count does not include the carriage return delimiter.

The Example program starts by enabling SVCs and setting U5 and U6 to the

addresses of the system line buffers, using the SVC 12 function. An SVC 5 is then

used to input the source input line into the buffer addressed by U5, and End-ofFile
is tested as before. Note that the SVC 5 function returns the character count in
A, and Y is set to 0 (therefore ready to index the first character of the line).

The character count of the line is saved in a temporary variable. The line is then

copied from the input buffer to the output buffer. The output buffer is then

output over channel 6 with the character count in the Y register.

An alternative to copying the input buffer's contents to the output buffer

would simply be to copy the pointer in U5 to U6. Normally, however, you will want

to use separate input and output buffers since you will be performing other opera-
tions on the line anyway.

Example Program 5: Read Hexadecimal Input Value.

Looking in Table 5-1, you may be surprised to find no direct way to input or

output numeric values. Instead, a combination of two SVCs must be used to perform

this function. This turns out to be a great deal more versatile. A pair of

definitions are needed to get us started:

Decoding is the operation of scanning a string of ASCII characters and return-

ing the numeric value they represent.

Encoding is the inverse operation; encoding accepts a (binary) value and

returns the string of ASCII characters representing its value.

For example the ASCII string " 010B " when decoded returns the binary value

0000000100001011 ($010B), assuming that hexadecimal decoding was selected. The

following problem illustrates how to input and decode a hex value.

PROBLEM: Write a subroutine which reads a hexadecimal number from channel 5 and

returns its value in P-register UO.

SOLUTION:

SVCENB = $EE

HEXIN LDA #$80
STA SVCENB ;MAKE SURE SVCS ARE ENABLED
svc 12 3SVC 12 = GET BUFFER ADDRESSES
LDX #5 ;CHANNEL 5 FOR INPUT
svc 5 ; INPUT LINE
svc 8 ;DECODE INPUT LINE
RTS

EXPLANATION:

The first thing you may notice about the program above is the "SVC" mnemonic.

The MTU. assembler has a built-in mnemonic for handling SVCs in this manner. If you

are using a different assembler, use BRK and .BYTE mnemonics instead as shown for

previous examples.

The enabling of SVCs and selection of the System buffers should be familiar by

now. In practice, these functions would probably be performed only once during

program initialization, and would not be included in this subroutine, thus reducing
the subroutine to six lines. The SVC 5 operation inputs a line into the buffer

addressed by P-register U5, as previously seen. The SVC 8 function searches the
buffer (starting with the character indexed by Y, which was 0 in our case since SVC

5 always returns Y=0) for a character string representing a hex value. Note that

any number of leading blanks may preceed the number, and the number may have any

number of characters, so long as the represented value does not exceed $FFFF. For

example, "00D7 ", " OD7 " and "D7" will all be acceptable. SVC 8 keeps scanning

until a non-hex character is encountered. Thus, for example, " 2B7,2 " will return

UO = $02B7, because the comma will terminate the scan. When control is returned to

the calling program, the Y register points to the delimiter (the comma in the

example immediately above), and the A register holds the delimiter encountered.

This is very useful when scanning a line containing multiple values. In addition,

the carry flag is returned to the calling program as a "Valid Data Enocuntered"

flag. Although the example program above did not do so, it is easy for the appli-
cation program to check the status of the carry upon completion of SVC 8; if it is
not set, then no valid hex digits were encountered prior to the delimiter (or

end-of-line). The end-of-line delimiter is $0D.

MISCELLANEOUS CONSIDERATIONS WHEN USING SVCS

The example programs presented have used the system input and output line

buffers. In practice, during program generation and debugging, it is advisable to

use other buffers, because any interaction with the system will cause your buffers

to be "wiped out" (for instance, any command you enter goes into the system input

buffer). To define your own buffers merely install pointers to the buffers into U5
and U6, instead of using SVC 12. Naturally if you wish to process arguments passed

on the command line, you will need to use the system buffers for that.

SVCs may only be issued by a program running in bank 0. If an SVC is attempted
from any of the other banks, it will be treated as a regular BRK and control will

be returned to CODOS. Programs which must run in banks other than bank 0 should
arrange to have their I/O and and scanning routines reside somewhere in bank 0.

There are no restrictions on the use of data banks however, and all SVCs will
preserve the data bank selection. The input and output line buffers are always
assumed to be in bank 0 so be careful when (Indirect),Y addressing is used to

access these buffers. See Appendix I in this manual and section 4.6 in the Monomeg

Single Board Computer hardware manual for more information on bank switching.

The example programs presented above should provide you with an understanding

of how SVCs work. In the following section, the SVCs available are described

individually. Appendix D contains a complete program using SVCs which you may want
to study. You may also wish to study some of the source programs provided on the
MTIU-130 distribution disk, most of which use SVCs extensively. The MTU-130 Assem-

bler manual also contains an example program using SVCs.

CHAPTER 6.

SVC_DESCRIPTIONS

Note: a summary of SVCs is provided in Table 5-1, page 5-2.

Svc _#0 ($00)

PURPOSE: Display register contents and return to CODOS Monitor.

ARGUMENTS: None.

ARGUMENTS RETURNED: None.

DESCRIPTION:

Svc #0 returns control to the CODOS Monitor with a display of the register
contents. It is functionally equivalent to the normal BRK to the CODOS monitor
with SVCs disabled.

EXAMPLE:

SVCENB = $EE

LDA —#$80
STA SVCENB

BRK
«BYTE 0 ;DISPLAY REGS, RETURN TO MONITOR.

SVC #1 ($01)

PURPOSE: Return to CODOS Monitor.

ARGUMENTS: None.

ARGUMENTS RETURNED: None.

DESCRIPTION:

SVC #1 returns control to the CODOS Monitor. It has two possible advantages
over simply using an RTS to return to the Monitor. First, it can be executed
anywhere, even in a subroutine, provided that SVCs are enabled. Second, the value
of the Program Counter (P) shown by the REG command after returning will show the
address of the SVC 0; using a RTS to return to Monitor will not update the P regis-
ter value shown. On the other hand, using an RTS to terminate a program has the
advantage that it can then be called as a subroutine or from within a job file
using SVC 13. You will probably want to use an RTS for normal program terminations
and SVC 0 or SVC 1 for abnormal terminations.

6-1

EXAMPLE:

SVCENB = $EE

LDA $80
STA SVCENB

BRK
BYTE 1 ;RETURN TO MONITOR.

NOTES:

1. The difference between SVC #0 and SVC #1 is
register contents at the BRK, and SVC #1 does not.

Svc _#2 ($02)

PURPOSE: Output inline message over channel.

ARGUMENTS:

First Byte after SVC 2 = desired channel number.

that SVC #0 displays the

Second through Nth byte = desired ASCII message text, terminated by a zero

byte ($00).

DESCRIPTION:

SVC 2 can be

SVCs are enabled). It does not affect any registers.

instruction immediately following the 0-byte terminator.

must be assigned to a valid device or file.

EXAMPLE:

SVCENB = $EE ;LOCATION OF SVC ENABLE FLAG
cR = 13 3ASCII CARRIAGE RETURN

LDA #$80
STA — SVCENB

JSR DOIT7
BRK
«BYTE 2 ;SVC #2 = OUTPUT MESSAGE...
«BYTE 6 3++-ON CHANNEL 6
«BYTE CR, ‘SUB. DOIT7 DONE, CALLING DOITS. ',0
JSR DOITS

used to display a message at any point in a program (provided

The message may be any
length up to 254 bytes, and can contain any byte including unprintable characters,

except NUL ($00), which is the message terminator. Control will be returned to the

This program segment will output this message to channel 6:

SUB. DOIT7 DONE, CALLING DOITS.

NOTES:

The channel specified

1. Attempting to output more than 254 bytes will cause the program to "hang".

6-2

2. The message will always be displayed starting at the present position. If

the message should start on a new line, then the carriage return should be explic-

itly included, as in the example above.

3. Be careful to check that you have not forgotten the CHANNEL NUMBER argu-

ment before the message, or the 0-BYTE TERMINATOR after the message!

SvC_#3 ($03)

PURPOSE: Input byte from channel.

ARGUMENTS:

X = desired channel number.

ARGUMENTS RETURNED:

A = byte received from channel.

Flags: CY (carry) = 1 means End-of-File was encountered.

DESCRIPTION:

SVC 3 inputs a single byte from a selected channel, which must be assigned to

a valid device or file. The value of the byte returned can be anything, including
control characters ($00 to $FF), if the selected channel is assigned to a file. If
assigned to a normal, character-oriented input device, such as the keyboard, then a
CNTRL-Z (ASCII SUB, $1A) will be interpreted as End-of-File. For files, End-of-

File is true only when no more bytes can be read from the file. It is the pro-

grammer's responsibility to check the status of the Carry after every SVC 3 to

ensure that End-of-File was mot reached. The A register is not meaningfully
returned if the Carry is set.

EXAMPLE:

SVCENB = $EE ;ADDRESS OF SVC-ENABLE FLAG

LDA #$80
STA SVCENB ;ENABLE SVCS.

LDX #5 jSELECT CHANNEL 5
BRK
-BYTE 3 3SVC #3 = INPUT BYTE ON CHANNEL (X)
BCS EOFHI ;BRANCH IF END-OF-FILE
CMP #tCt 3WAS INPUT CHARACTER 'C'?

This program segment inputs a character from the file or device assigned to channel
5 and checks to see if it was an ASCII "Cc".

NOTES:

1. The remaining flags (other than CY) are not meaningfully returned; in any

ease, the decimal mode flag will not be set.

2. Any value byte can be input including $00, $08, $7F, $FF, etc. No editing
characters are recognized.

3. For applications requiring high-speed disk input of large amounts of data,

Svc 15 is preferred to SVC 3. Since the SVC processor is called for every byte of

input using SVC 3, the overhead involved limits throughput to less than 1,000 bytes
per second. SVC 15 is capable of throughput in excess of 15,000 bytes per second.

svc #4 ($04)

PURPOSE: Output byte over channel.

ARGUMENTS:

X = Channel desired.

A Byte to be output.

ARGUMENTS RETURNED:

FLAGS: CY = 1 if at End-of-File after output operation.

DESCRIPTION:

Svc 4 outputs the byte in the accumulator over the channel specified in the X

register. The channel must be assigned to a valid file or device. Although there

is no need to do so, application programs may wish to test the Carry flag after SVC
4 to distinguish whether the character written was the last character of the file

or was re-written over some other part of the file. If the channel is assigned to
a device instead of a file, the Carry will always be returned set, since End-of-

File has no meaning in this context.

EXAMPLE:

SVCENB = $EE ;ADDRESS OF SVC ENABLE FLAG FOR SYSTEM

LDA #$80
STA SVCENB ;ENABLE SVCS

LDA #$07 ;BYTE DESIRED TO OUTPUT
LDX #2 ;CHANNEL 2
BRK

-BYTE 4 3SVC 4 = OUTPUT BYTE
JMP THERE

This program segment outputs $07 over channel 2. Note that $07 is not the

character "7" but simply a byte with value 7. If channel 2 is assigned to the
MTU-130 console display, this will sound a short beep through the speaker since $07
is the ASCII BEL control character.

NOTES:

1. The value $00 (NUL) can be output using SVC 4, as can any other possible
8-bit code.

6-4

2. For applications requiring high-speed disk output of large amounts of data,
SVC 16 is preferred to SVC 4. Since the SVC processor is called for every byte of
output using SVC 4, the overhead involved limits throughput to less than 1,000
bytes per second. SVC 16 is capable of throughput in excess of 15,000 bytes per
second.

3. After you have finished writing to a file, it is a good practice to FREE
the channel. This ensures that the system buffer for that file will be "flushed"
to disk and that the directory will be updated. Otherwise, the actual disk con-
tents will not be updated until you CLOSE the disk or change the file position.

Svc_#5 ($05)

PURPOSE: Input line of text from channel.

ARGUMENTS:

X = Channel number to read from.

U5 = Pointer to desired input buffer for line.

ARGUMENTS RETURNED:

A Count of characters in line.

Y = 0s

Flags: CY = 1 if End-of-File was encountered immediately.

) DESCRIPTION:

Svc 5 inputs a line of text from the file or device. The text will be depos-
ited in a buffer whose address is specified in U5. The line of text will be term-
inated by a CR ($0D). After the SVC is processed, the Carry will be set only if no
characters could be read from the channel because End-of- File was encountered.
The A register will contain a character count for the input line. This count does
not include the $0D terminator. The Y register is always returned as 0 to facili-
tate user processing of the line using Indirect, Y addressing. End-of-Line is
defined as the first carriage return ($0D) encountered.

EXAMPLE:

SVCENB = $EE ;LOCATION OF SVC ENABLE FLAG
U5 = $BA 3P-REGISTER U5 LOCATION

LDA #$80
STA SVCENB ;ENABLE SVCS
LDA #$00

STA U5
LDA #$10

STA U5+1 ;DEFINE BUFFER ADDRESS AS $1000.

LDX #5 ;CHANNEL 5
BRK

-BYTE 5 3SVC 5 = INPUT LINE FROM CHAN. (X).
BCS EOFHI ;BRANCH IF END-OF-FILE

STA NCHLN ;ELSE SAVE COUNT OF CHARACTERS IN LINE

6-5

This program segment inputs a line of text from channel 5 and places it in a buffer

starting at address $1000.

NOTES:

1. The system maintains a "Maximum Input Record Length" parameter for text

input, which has a default value of 192 ($CO) characters. If an SVC 5 attempts to
input a line with more than 192 characters, then the system will automatically add

an end-of-line character after 192 characters are read. This prevents SVC 5 from
wiping out all of memory if the channel is inadvertently assigned to a non-text
file which does not contain end-of-line terminators. The value of the Maximum

Record Length parameter can be altered if it is necessary to read lines of greater

than 192 characters (see Appendix E). The system buffers are only 192 characters

long, however, so the user will have to provide a buffer elsewhere and not use SVC

12 to define the buffer address.

2. When SVC 5 is used to read a channel assigned to the Console, ail normal

system editing characters (such as RUBOUT, CTRL-B, etc.) will be in effect. If an

attempt is made to input more than 192 characters from the Console, a

will be sounded and no more characters will be accepted for inser

affords the user the chance to backup and change the line, perhaps to make it fit

in the 192-character limit.

3. No editing characters are recognized when reading from any other device or
file other than the Console. Therefore if you copy lines with embedded control

characters using SVC 5 and SVC 6, these characters will not be corrupted.

4, When maximum throughput is essential for reading disk files, you may wish

to use SVC 15 instead of SVC 5. If you use SVC 15 to read a large block from disk

and then remove lines from the buffer individually as needed, throughput will

normally be substantially enhanced compared with using individal calls to SVC 5 to

read every line.

Svc_#6 ($06)

PURPOSE: Output line of text on channel.

ARGUMENTS:

X = Channel desired.

Y = Number of characters in line.

U6 = Starting address of line of text.

ARGUMENTS RETURNED: None.

DESCRIPTION:

SVC 6 outputs a line of text over a channel which is assigned to a valid file

or device. U6 must contain a pointer to a buffer containing the text to be sent.

The Y register must hold the number of characters to be sent, not including the

line terminator.

EXAMPLE:

SVCENB = $EE ;LOCATION OF SVC-ENABLE FLAG
U6 = $BC ;LOCATION OF P-REGISTER U6

LDA #$80
STA SVCENB ;ENABLE SVCS

LDA PROD

STA U6 ;DEFINE ADDRESS OF TEXT TO BE SENT
LDA PROD/256
STA U6+1

LDX #6 ;CHANNEL 6
LDY #11 311 CHARACTERS IN LINE
BRK

-BYTE 6 ;SVC 6 = OUTPUT LINE

PROD -BYTE ‘DISK SYSTEM'

This program segment will output "DISK SYSTEM" followed by an end-of-line character
(CR) on channel 6. :

NOTES:

1, The line to be output cannot exceed 254 characters. If the system output

buffer is used, the programmer must not fill the buffer with more than 192 charac-
ters. Failure to limit the amount put into the system output buffer will cause
memory above the system buffer to be wiped out.

2. The character count must be passed in Y. This is normally convenient since

if you advance Y after each character is installed in the buffer, it will auto-
matically contain the character count. Also SVCs which perform encoding of numeric

values automatically return Y as the character count.

svc #7 ($07)

PURPOSE: Output string of text on channel.

ARGUMENTS:

x Channel desired.

Y = Number of characters in string.

U6 = Starting address of string of text.

ARGUMENTS RETURNED: None.

DESCRIPTION:

SVC 7 outputs a string of text over a channel which is assigned to a valid

file or device. U6 must contain a pointer to a buffer containing the text to be

6-7

sent. The Y register must hold the number of characters to be sent.

EXAMPLE:

SVCENB = $EE ;LOCATION OF SVC-ENABLE FLAG
U6 = $BC ;LOCATION OF P-REGISTER U6

LDA #$80

STA SVCENB ;ENABLE SVCS

LDA PROD

STA U6 ;DEFINE ADDRESS OF TEXT TO BE SENT
LDA PROD/256

STA U6+1

LDX #6 ;CHANNEL 6
LDY #11 311 CHARACTERS IN LINE
BRK

-BYTE 7 3SVC 7 = OUTPUT STRING

PROD -BYTE ‘DISK SYSTEM’

This program segment will output "DISK SYSTEM". NO End-of-line character will be
added by the system.

NOTES:

1. The text to be output cannot exceed 254 characters.

2. The difference between SVC #6 and SVC #7 is that SVC #6 outputs a carriage
return at the end of the string, and SVC #7 does not. Naturally carriage returns
can be embedded in the string itself if desired.

Svc #8 ($08)

PURPOSE: Decode hexadecimal ASCII string to 16-bit value.

ARGUMENTS :

Y = Index to first character of string to be decoded.

U5 = Pointer to the string of ASCII characters.

ARGUMENTS RETURNED:

A Delimiting character encountered.

Y = Index to delimiting character.

Flags: CY = 1 if at least one valid hex digit was encountered prior to the
delimiter.

UO = Value returned (in normal low-byte, high-byte order).

DESCRIPTION:

Svc 8 scans a_ string of characters in memory and returns the numeric value

represented by the string. The string must represent a hexadecimal number.

EXAMPLE:

SVCENB = $EE ;LOCATION OF SVC ENABLE FLAG
uo = $B0 ;PSEUDO-REG. UO
U5 = $BA ;PSEUDO-REG. U5

LDA #$80
STA SVCENB ;ENABLE SVCS

LDA #$00
STA U5 3SET U5 TO ADDRESS OF START OF STRING
LDA #$10

STA U5+1
LDY #0 ;START AT 1ST CHARACTER IN STRING
BRK

.BYTE 8 3SVC 8 = DECODE HEX
BCC ERROR ;BRANCH IF NO LEGAL HEX NUMBER FOUND

This program segment decodes a string of characters starting at $1000 and returns

the value in UO. If the contents of memory starting at $1000 was "02B " ($30, $32,

$42, $20), then at the end of the program segment, A = $20, Y = $03, and the carry
lag is set. Memory location $00BO (U0) = $2B, and $00B1 = $00.

NOTES:

1. The string to be decoded may contain any number of leading blanks or

zeroes.

2. The hex number must be unsigned.

3) The decoding process halts as soon as a delimiter is encountered. Any

non-hex character is a delimiter, including a blank.

4, If no valid hex characters are encountered prior to the delimiter, the

earry is cleared and UO = 0. This provides the user with the option of either

accepting a blank field as a zero entry or rejecting it as invalid.

Be See Chapter 5 Example Program 5 for a complete example of hexadecimal

input.

Svc_#9 ($09)

PURPOSE: Decode decimal ASCII string to 16-bit value.

ARGUMENTS:

Y = Index to first character of string to be decoded.

U5 = Starting address of string of ASCII characters.

6-9

ARGUMENTS RETURNED:

A Delimiting character encountered.

Y = Index to delimiting character.

Flags: CY = 1 if at least one valid digit was encountered prior to the delim-

iter.

UO = Value returned (in normal low-byte, high-byte order).

DESCRIPTION:

svC 9 scans a string of characters in memory and returns the numeric value

represented by the string. The string must represent a decimal integer.

EXAMPLE:

SVCENB = $EE ;LOCATION OF SVC ENABLE FLAG
uo = $B0 ;PSEUDO-REG. UO

U5 = $BA ;PSEUDO-REG. U5

LDA #$80
STA SVCENB ;ENABLE SVCS

LDA #$00
STA U5 3SET U5 TO ADDRESS OF START OF STRING
LDA #$10
STA U5+1
LDY #2 ; START AT 3RD CHARACTER IN STRING
BRK
«BYTE 9 ;SVC 9 = DECODE DECIMAL
BCC ERROR ;BRANCH IF NO LEGAL DECIMAL NUMBER FOUND

This program segment decodes a string of characters starting at the third character

in a string located at address $1000 in memory. If the string at $1000 was "YZ
300,23 ", then at the end of the program segment, A = $2C (","), Y = 6, and the
earry is set. Memory location $00B0 (U0) contains $2C and $00B1 contains $01,

since 300 decimal is 012C hex.

NOTES:

1. The string being decoded may contain any number of leading blanks or

zeroes.

2. The decimal number must be unsigned.

3. The decoding process halts as soon as a delimiter is encountered. Any

non-digit character is a delimiter, including a blank.

4, If no valid digits are encountered prior to the delimiter, the carry is

cleared and U0 = 0. This provides the user with the option of either accepting a

blank field as a zero entry or rejecting it as invalid.

svc #10 ($0A)

PURPOSE: Encode 16-bit value to hexadecimal ASCII string.

ARGUMENTS:

Y = Index to byte in buffer to receive first character encoded.

UO = Value to be encoded.

U6 = Pointer to buffer.

ARGUMENTS RETURNED:

Y = Index to byte after last character of hex number (Y returned = Y passed+4).

DESCRIPTION:

SVC 10 encodes the unsigned value in UO into four hex characters starting at

the memory location addressed by (U6),Y.

EXAMPLE:

SVCENB = $EE ;ADDRESS OF SVC ENABLE FLAG

uo = $B0 ;ADDRESS OF USER P-REG UO (VALUE)

ANSWER a42 ;16-BIT VALUE TO BE OUTPUT

HEXOUT LDA #$80

STA SVCENB ;ENABLE SVCS
LDA ANSWER

STA uo ;COPY ANSWER TO UO (LOW BYTE)...
LDA ANSWER+1
STA U0+1 3..-AND HI BYTE.
BRK

-BYTE 12 3SVC 12 = GET LOCATION OF SYSTEM BUFFERS
LDY #0 jSTART \T 1ST CHARACTER OF BUFFER
BRK

-BYTE 10 3SVC 10 ($0A) = ENCODE UO TO 4 ASCII CHARS.
LDX #6 ;CHANNEL 6 FOR OUTPUT
BRK

-BYTE 6 3SVC 6 = OUTPUT LINE TO CHANNEL

This program segment displays the hexadecimal value of the contents of ANSWER on

channel 6. If ANSWER contained $3B and ANSWER+1 contained $0A, and channel 6 was
assigned to the Console, then "0A3B" would be displayed, followed by a carriage
return.

6-11

Svc #11 ($0B)

PURPOSE: Encode 16-bit value to decimal ASCII string.

ARGUMENTS :

Y = Index to byte in buffer to receive first character encoded.

a, 3 u Value to be encoded.

U6 = Pointer to buffer.

ARGUMENTS RETURNED:

Y = Index to byte after last character of decimal number.

DESCRIPTION:

SVC 11 encodes the unsigned value in UO into a decimal ASCII string starting at
the memory location addressed by (U6),Y.

EXAMPLE:

SVCENB = $EE j;ADDRESS OF SVC ENABLE FLAG
uo = $B0 sADDRESS OF USER P-REG UO (VALUE)

ANSWER = *=#+2 316-BIT VALUE TO BE OUTPUT

HEXOUT LDA #$80

STA SVCENB j;ENABLE SVCS
LDA ANSWER

STA ite) ;COPY ANSWER TO UO (LOW BYTE)...
LDA ANSWER+1

STA U0+1 j---AND HI BYTE.
BRK

-BYTE 12 3SVC 12 = GET LOCATION OF SYSTEM BUFFERS
LDY #8 sSTART AT 9TH CHARACTER OF BUFFER
BRK

.BYTE 11 3SVC 11 ($0B) = ENCODE UO TO ASCII CHARS.
LDX #6 ;CHANNEL 6 FOR OUTPUT
BRK

.BYTE 6 3SVC 6 = OUTPUT LINE TO CHANNEL

This program segment displays the first 8 characters of the system output buffer
and the decimal value of the contents of ANSWER on channel 6. Suppose ANSWER
contained $3B and ANSWER+1 contained $0A, channel 6 was assigned to the Console,
and the first 8 bytes of the system output buffer contained "ANSWER =". The
Console would then display, "ANSWER =2619", followed by a carriage return.

NOTES:

1. The encoded string will have from 1 to 5 characters, depending on the
magnitude of the value in UO.

Svc #12 ($0C)

PURPOSE: Obtain location of system input line buffer, output line buffer, and
arguments passed to user-defined command.

ARGUMENTS: None.

ARGUMENTS RETURNED:

Y = Index to first argument passed.

U5 = Pointer to System Input-line buffer.

U6 = Pointer to System Output-line buffer.

DESCRIPTION:

User-defined programs may process arguments passed in the same manner as for
CODOS built-in commands, by using SVC 12. In addition, SVC 12 returns the starting
address of the CODOS text input buffer and output buffer, which may be used by the
program for input-output.

EXAMPLE :

SVCENB = $EE sADDRESS OF SVC-ENABLE FLAG
U5 = $BA 3P-REG. U5

hei $2000 ;SAMPLE PROGRAM ORIGIN
MYCOMD LDA #$80

STA SVCENB ;ENABLE SVCS

BRK
- BYTE 12. 3SVC 12 ($0C) = GET BUFFERS, ARGUMENT POINTER
LDA (U5) ,¥ ;FETCH FIRST CHARACTER OF ARGUMENT
CMP #$0D ;TEST IF CARRIAGE RETURN
BEQ NOARG jBRANCH IF END-OF-LINE (NO ARGUMENT)
CMP Hts?

BEQ NOARG ;BRANCH IF COMMENT (NO ARGUMENT)
CMP om!

BEQ MONDAY ;BRANCH IF FIRST CHAR IS "M"
CMP #'T!

BEQ TUETHR ;BRANCH IF FIRST CHAR IS "T"

This program segment sets U5 to the location of the CODOS input buffer and U6 to
the location of the CODOS output buffer. The System Input Buffer on entry toa
program always contains the CODOS command which initiated the program. Svc 12

returns Yas a pointer to the first non-blank character following the command.

This allows a program to process arguments. For example, if the above program
segment was initiated by the CODOS command:

MYCOMD T

then (U5),¥ addresses "T", and the program would branch to TUETHR (not shown). If
the program was entered by

GO 2000 M

then the program would branch to MONDAY instead.

6-13

SVC_#13 ($0D)

PURPOSE: To execute any CODOS Monitor command.

ARGUMENTS:

U5 = pointer to command in memory. Command must be terminated by CR ($0D).

ARGUMENTS RETURNED:

All registers and Pseudo-registers are returned as set by the Monitor command
executed (see note 1 below). Registers not changed by the command are unaffected.

DESCRIPTION:

SVC #13 ($0D) is the most powerful of all SVCs provided. Creatively used, it

can give tremendous leverage to an application program. Simply stated, SVC #13
calls the CODOS Monitor as a subroutine, with the command read from memory instead
of from channel 1 (normally the Console). Each invocation of SVC #13 will execute

one CODOS Monitor command and then return to the invoking program in the normal

manner. Thus a program can easily OPEN or CLOSE drives, FILL or COPY memory, GET,

SAVE or TYPE files, etc. Utilities and User-defined programs may also be executed
in the usual manner. This provides a way to chain programs together, load over-

lays, selectively execute certain programs based on computed results, etc. To use
SVC #13, the desired command must exist as an ASCII string in memory, terminated by
a Carriage Return ($0D), and P-register U5 must contain the address of the start of
this command string.

EXAMPLE :

SVCENB $EE
U5 $BA

$2100 ;LOCATION OF COMMAND TO BE EXECUTED
"PROGTWO',$0D ;EXECUTE PROGRAM 2 COMMAND

OVRLA2 LDA #$80

STA SVCENB ;ENABLE SVCS

LDA #00
STA U5 ;DEFINE ADDRESS OF COMMAND IN U5
LDA #$21

STA U5+1
BRK
. BYTE 13 ;EXECUTE MONITOR COMMAND AT $2100 ("PROGTWO")
BRK

«BYTE 2 ;DISPLAY INLINE MESSAGE
«BYTE 2 3ON CHANNEL 2
«BYTE $D,'PROGRAM 2 EXECUTION COMPLETE.',0O

This program segment executes the Monitor command "PROGTWO", which loads and

executes the User-defined program called PROGITWO.C from the default drive. When

PROGTWO returns (by executing an RTS), it will effectively return to the program

segment above instead of to the CODOS Monitor. The message "PROGRAM 2 EXECUTION
COMPLETE" is then displayed using SVC #2.

NOTES:

1. Since the return path to the invoking program is stored on the stack, the

Monitor command executed must not redefine the stack pointer (except by normal

usage of balanced JSR, RTS, pushes and pops, etc., of course). Therefore the REG

command cannot be used with "S=n" as an argument.

2s When executing a Utility program or User-defined command, it is the pro-

grammer's responsibility to ensure that no memory conflicts occur with the invoking

program. Naturally, if you execute a program which occupies the same memory as the

invoking program, you will wipe it out. Of course you could SAVE any conflicting

memory blocks using another SVC #13, and restore them with a GET.

3. When executing a program, registers and Pseudo-registers may be used for

passing arguments in either direction (to and from the program being executed), if

desired.

4, SVC #13's can be nested up to seven deep. That is, a program can execute
another program which in turn uses SVC #13 to execute other commands or programs.

5. A program invoked using SVC #13 will return to the CODOS Monitor and not to

the invoking program if an SVC #0 or SVC #1 is used. Only an RTS instruction can

be used to return to the invoking program.

Svc #14 ($0E)

PURPOSE: To determine the channel assignment for a selected channel.

ARGUMENTS:

X = Channel number desired, 0 to 9.

ARGUMENTS RETURNED:

Flags: Carry is set if the channel is assigned. Other flags undefined.

A = disk drive number if returned as 0 to 3; otherwise returned as the single-
eharacter device name. Not meaningfully returned if CY is clear.

DESCRIPTION:

SVC 14 ($0E) enables a program to determine if a specified I-O channel is

assigned or available. If it is assigned, then the device or drive assigned can

also be determined.

EXAMPLE:

SVCENB = $EE ;SVC ENABLE FLAG

LDA #$80

STA SVCENB ;ENABLE SVCS

LDX #6 ;CHANNEL 6
BRK

.BYTE 14 ;SVC 14 ($0E) = QUERY CHANNEL STATUS
BCC ISAVAL ;BRANCH IF CHANNEL 6 IS UNASSIGNED

6-15

CMP #4
BCC ISFILE ;BRANCH IF ASSIGNED TO FILE

CMP #'Nt 3"N" = NULL DEVICE NAME
BEQ ISNULL ;BRANCH IF ASSIGNED TO NULL DEVICE

This program segment tests the current assignment of channel 6. If it is unas-

signed, the program branches to ISAVAL (not shown). If the channel is assigned to

a file on disk, it branches to ISFILE. Otherwise, the channel mst be assigned to
a device, in which case the device name is checked and a branch to ISNULL is made
if the Null device is assigned.

SVC #15 ($0F)

PURPOSE: To read a record from a channel.

ARGUMENTS :

X = Channel number desired, 0 to 9. Must already be assigned to a valid file

or input device.

U1 = Starting address to receive contents of record in the currently selected

data bank.

U2 = Size of record to be read, in bytes.

ARGUMENTS RETURNED:

U1 Address of last byte read, plus one.

U2 = Actual number of bytes read.

Flags: If Carry is set then End-of-File was encountered before any bytes could

be read. All other flags are not meaningfully returned.

DESCRIPTION:

SVC 15 ($0F) reads a block of bytes from a channel.

EXAMPLE :

SVCENB = $EE 3SVC ENABLE FLAG ADDRESS
U1 = $B2 3P-REGISTER U1

v2 = $B4 3P-REGISTER U2

LDA #$80

STA SVCENB ;ENABLE SVCS

LDA #$00

STA U1 ;DEFINE STARTING ADDRESS FOR RECORD = $2000...
LDA #$20
STA U1+1
LDA #$20 ;DEFINE RECORD SIZE AS 800 DECIMAL BYTES=$0320
STA U2
LDA #$03
STA U2+1

LDX #5 ;CHANNEL 5

6-16

BRK
.BYTE 15 3SVC 15 (OF) = READ RECORD INTO MEMORY
BCS DONE ;BRANCH IF END-OF-FILE

This program segment reads 800 bytes into memory from channel 5, starting at

address $2000.

NOTES:

1. If the specified channel is assigned to a file, then reading begins at the

current file position and continues until the specified number of bytes are read or
End-of-File is encountered. Any type of data bytes may be read; there are no
reserved End-of-Record or End-of-File characters.

2. If the channel is assigned to a device (not a file), then reading continues
until the specified number of bytes are read or the End-of-File character (ASCII
SUB = $1A = CNTRL-Z) is read. The CNTRL-Z is not returned as part of the record in
memory.

3. If the Carry flag is returned set then no bytes at all could be read from

the channel because End-of-File was encountered immediately.

4. If the Carry flag is returned clear then at least 1 byte was read before

End-of- file. The actual number of bytes read is returned in U2. If U2 contains a

smaller count than was specified but the Carry is returned clear, it indicates that

End-of-File was encountered during the read operation.

5. Remember that the record is read into the memory bank that corresponds to

the data bank selected when SVC #15 is executed. Normally this is bank 0.

6. When reading large amounts of data froma file, using large records will

significantly improve the reading speed. For example, if a program is to read 1000

80-character records, the obvious way to do it is to use a loop which invokes SVC

#15 1000 times with U2 set to 80. However, a significant speed improvement can be

realized by instead using, say, 100 SVCs of 800 bytes each, if sufficient memory is

available for an 800 byte buffer. By vsing large records it is possible to read in

excess of 15,000 bytes per second continuous throughput from a file.

Svc #16 ($10)

PURPOSE: To write a record to a channel.

ARGUMENTS :

X = Channel number desired, 0 to 9. Must already be assigned to a valid file
or input device.

U1 = Starting address of record in memory in currently selected data bank.

U2 = Size of record to be written, in bytes.

ARGUMENTS RETURNED:

Flags: If Carry is set then the channel was positioned at End-of-File after

completing the write.

6-17

DESCRIPTION:

SVC 16 ($10) writes a block of bytes in memory to a channel.

EXAMPLE:

SVCENB = $EE ;SVC ENABLE FLAG ADDRESS
u1 = $B2 ;P-REGISTER U1
v2 = $B4 ;P-REGISTER U2

LDA #$80
STA SVCENB ;ENABLE SVCS

LDA #$00
STA ul ;DEFINE STARTING ADDRESS FOR RECORD = $2000...
LDA #$20
STA Ul+1
LDA #$20 ;DEFINE RECORD SIZE AS 800 DECIMAL BYTES=$0320
STA v2
LDA #$03
STA U2+1
LDX #6 ;CHANNEL 6
BRK
.BYTE 16 ;SVC 16 ($10) = WRITE RECORD

This program segment writes a record on channel 6. The record to be written is 800

decimal bytes long and starts at $2000 in memory.

NOTES:

1. If the selected channel is assgined to a disk file, then writing begins at

the current file position. Any type of data bytes may be written; no special End-

of-Record characters will be written by the system. If the CY is returned clear,

it indicates that the the file was not positioned to End-of-File on the completion
of the write operation (therefore part of the file must have been overwritten).

2. If the specified channel is assigned to a device, then writing continues

to that device until the specified number of bytes has been output. The CY flag is

always returned set when writing to a device.

3. Using large records will improve writing speed. For example, writing 100

records of 80 bytes each takes longer than writing 10 records of 800 bytes each.

Continuous output to disk in excess of 15,000 bytes per second is possible by using
large records.

4, After you have finished writing to a file, it is a good practice to FREE
the channel. This insures that the system buffer for that file will be "flushed"
to disk and that the directory will be updated. Otherwise, the actual disk con-
tents will not be updated until you CLOSE the disk or change the file position.

5. Remember that the record is written from the memory bank that corresponds
to the data bank selected when SVC #16 is executed.

Sve #17 ($11)

PURPOSE: To set the file position for a channel to Beginning-of-Data.

ARGUMENTS :

X = Channel number desired, 0 to 9. Must already be assigned to a valid file

or device.

ARGUMENTS RETURNED: None.

DESCRIPTION:

After executing SVC 17 ($11), a subsequent read or write operation will access

the first data byte of the file assigned to the specified channel.

EXAMPLE:

SVCENB = $EE ;SVC ENABLE FLAG ADDRESS

LDA #$80
STA SVCENB j3ENABLE SVCS
LDX #5 ;SELECT CHANNEL 5
BRK

«BYTE 17 3SVC 17 ($11) = "REWIND" THE FILE

This program segment positions the file assigned to channel 5 to Beginning-of-Data.

NOTES:

1. If the selected channel is assigned to a device instead of a file, no

action takes place.

2. A file is always initially positioned to Beginning-of-Data when it is

assigned.

3. Executing SVC 17 will always result in a physical disk access, even if the

file is already positioned at Beginning-of-Data.

Svc _#18 ($12)

PURPOSE: To set the file position for a channel to End-of-File.

ARGUMENTS:

X = Channel number desired, 0 to 9. Must already be assigned to a valid file
or device.

ARGUMENTS RETURNED: None.

DESCRIPTION:

svc 18 ($12) positions the file assigned to the specified channel to End-of

file. A subsequent write operation would therefore append the file.

6-19

EXAMPLE:

SVCENB = $EE 3SVC ENABLE FLAG ADDRESS

LDA #$80

STA SVCENB ;ENABLE SVCS
LDX #6 ;SELECT CHANNEL 6
BRK

.BYTE 18 3SVC 18 ($12) = MOVE TO END-OF-FILE

This program segment positions the file assigned to channel 6 to End-of-File.

NOTES:

1. %If the selected channel is assigned to a device instead of a file, no
action takes place.

2. A file is always initially positioned to Beginning-of-Data when it is
assigned to a channel.

3. Executing SVC 18 will always result in a Physical disk access, even if the
file is already positioned at End-of-File.

SVC #19 ($13)

PURPOSE: To specify the file position for a channel.

ARGUMENTS:

X = Channel number desired, 0 to 9. Must already be assigned to a valid file
or device.

U7 = Desired file position (3 bytes).

ARGUMENTS RETURNED: None.

DESCRIPTION:

SVC 19 ($13) positions the file assigned to the specified channel to the
position specified by U7.

EXAMPLE:

SVCENB = $EE 3SVC ENABLE FLAG ADDRESS
U7 = $BE ;P-REG U7 (3 BYTES LONG)

LDA #$80
STA SVCENB ;ENABLE SVCS
LDA #72
STA U7 ;SELECT POSITION TO ACCESS 73RD BYTE OF FILE...
LDA #0
STA UT+1
STA U7+2
LDX #6 ;SELECT CHANNEL 6
BRK
»BYTE 19 3SVC 19 ($13) = POSITION CHANNEL TO (U7)

6-20

This program segment positions the file assigned to channel 6 to $000048. A subse-
quent read or write will begin at this position.

NOTES:

1. If the selected channel is assigned to a device instead of a file, no
action takes place.

2. A file is always initially positioned to Beginning-of-Data when it is
assigned to a channel.

3. Executing SVC 19 will always result in a physical disk access, even if the
file is already positioned at the location specified by U7.

4, If the position specified by U7 is beyond the current End-of-File, the file
will be postioned to the current End-of-file.

5. The 16-bit arithmetic Pseudo-Processor (SVC #27) provides a very simple
method of computing 24-bit file positions given a 16-bit record size and a 16-bit
record number. See Chapter 7 for details.

Svc _#20 ($14)

PURPOSE: To determine the position of a file assigned to a channel.

ARGUMENTS:

X = Channel number desired, 0 to 9. Must already be assigned to a valid file
or device.

ARGUMENTS RETURNED:

U7 = File position (3 bytes)

DESCRIPTION:

Svc 20 ($14) returns the present file position for the specified channel in U7.

EXAMPLE:

SVCENB = $EE ;SVC ENABLE FLAG ADDRESS
U7 = $BE 3P-REG U7 (3 BYTES LONG)

LDA #$80
STA SVCENB ;ENABLE SVCS

LDX #8 ;CHANNEL 8
BRK
«BYTE 20 sSVC 20 ($14) = QUERRY FILE POSITION

This program segment sets U7 to the present position of the file assigned to

channel 8. For example, if 82,965 bytes had been read thus far starting at Be-
ginning-of-Data, then $BE = $15, $BF = $44, and $CO = $01.

NOTES:

6-21

1, If the specified channel is assigned to a device (not a disk file), then U7
is always returned as $000000.

svc _#21 ($15)

PURPOSE: To assign a channel to a device or file.

ARGUMENTS:

A = Disk drive number, 0 to 3, or single-character device name to be assigned.

-X = Channel number desired, 0 to 9.

U3 = Pointer to file name in memory (applies to assignment to file only).

ARGUMENTS RETURNED:

A = status byte as follows:

Bit 6 = File flag. If not set, then channel assigned to device, not file.
Bit 7 Old flag. If set, then file already exists.
Bit 5 = Locked flag. If set, then file is locked (read-only).

Flags: Sign flag and Overflow flag reflect value of bits 7 and 6 respectively

of status byte as described above.

DESCRIPTION:

SVC 21 ($15) assigns the channel specified by X to the device or disk drive
specified by A.

EXAMPLE:

SVCENB =f $EE 3SVC ENABLE FLAG ADDRESS

U3 = $B6 ;P-REG U6

FILENM «BYTE "MYDATA5.D' ;DESIRED FILE NAME

LDA #$80

STA SVCENB j; ENABLE SVCS

LDA #F ILENM
STA U3 sINSTALL POINTER TO FILE NAME IN U3
LDA #FILENM/256
STA U3+1

LDX #5 ;CHANNEL 5
LDA #1 3DISK DRIVE 1
BRK

«BYTE 21 ;SVC 21 = ASSIGN CHANNEL
BPL NOFILE ;BRANCH IF FILE DOES NOT ALREADY EXIST

This program segment assigns channel 5 to a file called MYDATA5.D on drive 1, and

branches to NOFILE if it is not an old file.

NOTES:

1. U3 is not used if the channel is assigned to a device (not file).

6-22

2. The file name can be terminated by any character which is not legal ina

file name. The extension may be included or omitted.

3. Assigning a channel toa file always positions the file to Beginning-of-

Data.

4, Assigning a channel which is already assigned, automatically frees the old

channel assignment before making the new assignment.

5. See SVC #29 for more information on file assignments.

Svc #22 ($16)

PURPOSE: To free a channel.

ARGUMENTS:

X = Channel number desired, 0 to 9.

ARGUMENTS RETURNED: None.

DESCRIPTION:

SVC 22 ($16) frees the channel specified by X.

EXAMPLE:

SVCENB = $EE 3SVC ENABLE FLAG ADDRESS

LDA #$80

STA SVCENB ; ENABLE SVCS

LDX #5 ; CHANNEL 5
BRK
-BYTE 22 ;SVC 22 = FREE CHANNEL

This program segment frees channel 5.

NOTES:

1. Freeing a channel which is unassigned results in no action.

2. It is important that programs which write to disk always free the channel

when the file is completed. Otherwise, if the disk is removed from the drive by

the operator without a CLOSE command, the file could be incomplete.

SVC_#23 ($17)

PURPOSE: To truncate a file at the present file position.

ARGUMENTS:

X = channel number to truncate (already assigned to a file).

ARGUMENTS RETURNED: none.

6-23

DESCRIPTION:

SVC #23 makes the present file position End-of-File. It is normally used to
discard the unwanted end part of a file, or to discard the unwanted residual when
overwriting an exisitng file with a shorter file.

EXAMPLE:

SVCENB = $EE 3SVC-ENABLE FLAG LOCATION

U7 = $BE 3P-REG U7 (3 BYTES LONG) FOR FILE POSITIONING

LDA $#80

STA SVCENB ;ENABLE SVCS
LDA #0

STA UT ;SET U7 TO $002000 (= 8K BYTES)
LDA #$20

STA UT+1

LDA #0

STA UT+2

LDX #6 ;CHANNEL 6 FILE
BRK

«BYTE 19 3POSITION FILE TO 8K BYTES
BRK

«BYTE 23 ;TRUNCATE REST OF FILE, IF ANY

This program segment truncates the file to a maximum of 8K bytes of data. If the
file contained less than 8K of data, it would not be changed. If it contained more
than 8K of data, the rest of the file would be discarded.

NOTES:

1. If the channel is assigned to a device instead of a file, no action takes
place.

Svc #24 ($18)

PURPOSE: To define the address of an interrupt service routine.

ARGUMENTS:

UO = pointer to interrupt service routine for IRQ.

ARGUMENTS RETURNED: none.

DESCRIPTION:

SVC #24 allows a user program to use interrupts, without interfering with
operation of SVCs, by defining the address of the desired interrupt-service sub-
routine. After executing SVC #24, any IRQ will cause control to be transferred to
the user-defined service routine. BRKs will still be processed by the SVC proces-
sor in the normal manner. The following paragraph explains BRK and IRQ processing
by CODOS in detail.

When CODOS is booted up, it sets the IRQ vector to point to CODOS's IRQ/BRK

processor. Thereafter, when a BRK or IRQ occurs, control vectors to CODOS. CODOS

tes:s the BRK bit in the processor status word to determine whether a BRK occurred

Thes modiSies lgeatoen

6-24

or an IRQ occurred. If a BRK occurred, it checks the status of SVCENB, and either
branches to the SVC processor or simply displays the registers and branches to the
Monitor. If the processor status word indicates that an interrupt has occurred,

CODOS jumps to the user's service routine. This check is very fast and only adds

24 machine cycles to the time otherwise needed to arrive at the service routine.

All registers and stack are preserved exactly as they would normally be if vector-

ing directly to the service routine. If SVC #24 has never been used to define the

address of the service routine, then the CODOS monitor will be re-entered
with an "INTERRUPT (IRQ)" message.

EXAMPLE:

SVCENB = $EE 3SVC ENABLE FLAG ADDRESS

uo = $BO ;PSEUDO REGISTER UO (2 BYTES)

LDA #$80
STA SVCENB ;ENABLE SVCS...

LDA #$00
STA uo ;DEFINE UO = ADDRESS OF SERVICE ROUTINE = $2000
LDA #$20

STA U0+1

BRK
»BYTE 24 ;SVC 24 = DEFINE IRQ SERVICE ROUTINE ADDRESS
CLI 3ENABLE INTERRUPTS

This program segment defines the IRQ service routine to be at $0800. Thereafter,

any IRQ will cause control to vector to $2000. BRKs, however, will continue to be
processed by the SVC processor in the normal manner.

NOTES:

1. A non-maskable interrupt normally causes re-entry into CODOS and a register

printout. Typically, only the keyboard INT key will cause non-maskable interrupts.

You may freely modify the NMI jump vector at $02FA - $02FC.

2. In rare cases, a program must respond to an interrupt so fast that it

cannot tolerate even the extra 24 machine cycles of overhead used by CODOS. In

this case, the program should not use SVC #24 to define the interrupt service

routine location, but should modify the normal system IRQ vector directly.
Naturally, once this is done, all BRKs and IRQs will go to the user's service
routine, thus disabling the SVC facility. The IRQ jump vector is at $02FD-$02FF.

3. Memory location $00EC is used by CODOS for temporarily saving the A reg-

ister before entering the user-defined service routine.

4, The User's interrupt service routine is entered with all registers in the

same condition as they would be if the service routine was entered by direct

vectoring, as described in note 2 above.

5. The interrupt service routine must reside in memory bank 0. The service

routine is entered with both bank selection registers unchanged from the values
they had when the interrupt was recognized. The Interrupt Mode flip-flop will be
set however which cancels the effect of the program bank register. The service
routine must return with an RTI instruction to properly reset this flip-flop.

6. Appendix D contains a complete program lisiting using interrupts for

high-speed, direct-to-disk data aquisition.

6-25

svc_#25 ($19)

PURPOSE: To define the address of a user-defined error recovery routine.

ARGUMENTS:

UO = pointer to desired error recovery procedure.

ARGUMENTS RETURNED: none.

DESCRIPTION:

SVC #25 Provides a method by which the advanced programmer can defeat the error
handling procedure built into the CODOS Monitor. Normally, when an error in an SVC

or command is detected, CODOS aborts the program, displays an error number and

mesage, and returns control to the Monitor. In certain circumstances, the user may

wish to temporarily bypass this error recovery. To do this, use SVC 25, with

Pseudo-register UO specifying the address of the User's machine-language error

processing routine. Thereafter, any error detected by CODOS will exit to the

user-defined error processor. On entry to the user-defined error processor, the

registers are all undefined; memory location $00ED contains the error number which

would normally be displayed by CODOS (see Appendix A). The top of the stack

contains the address where the error was detected (not the address of the error!).

The state of the system is undefined and usually unprotected. It is entirely the

user's responsibility to take appropriate action. Usage of SVC #25 should be

reserved for very special circumstances and should not be used indiscriminantly.

EXAMPLE:

SVCENB = $EE
uo = $B0

LDA #00
STA vo ;SET USER ERROR PROCESSOR ADDRESS TO $8000
LDA #$80
STA U0+1
BRK
«BYTE 25 ;REDEFINE ERROR VECTOR

This program segment enables a user error-processor at $8000.

NOTES:

1. The User-defined error processor remains in effect until the system is RESET,

or SVC #26 is executed.

3. Executing an RTS from the user error-processor is not an appropriate method to

reenter the erring program and may crash the system.

4, One method of error recovery is:

a. Execute SVC 25 to define your error-recovery routine.
b. Save the stack pointer immediately before executing the SVC desired.

ce. In the error-processor, examine the error number in $00ED and then clear it

to 0. If the error is not recoverable, execute SVC #26, issue your own error

message, and abort to Monitor. If the error is recoverable, correct it, restore

the stack, and re-execute the desired SVC.

5. Tne User-defined error processor must reside in bank 0.

6-26

Svc _ #26 ($1A)

PURPOSE: To reinstate normal error processing by CODOS.

ARGUMENTS: none.

ARGUMENTS RETURNED: none.

DESCRIPTION:

SVC #26 restores the normal error processing by CODOS after previous execution
of SVC #25.

EXAMPLE:

SVCENB) = $EE

LDA #$80
STA SVCENB
BRK
«BYTE 26 3SVC 26 = RESTORE NORMAL CODOS ERROR~PROCESSING

This program segment cancels the effect of the previous SVC #25.

NOTES:

Executing SVC #26 without a previous SVC #25 is permissable.

Svc_#27 ($1B)

PURPOSE: To enter the CODOS 16-bit Pseudo-processor.

ARGUMENTS: First through n-th bytes following the SVC are instructions for the

16-bit pseudo processor. A zero instruction (not zero byte) terminates the string.

ARGUMENTS RETURNED:

Flags are returned as described in section 7.

DESCRIPTION:

SVC #27 enters the built-in CODOS 16-bit arithmetic Pseudo-processor for
performing double precision arithmetic including multiply and divide,and for compu-
ting 24-bit file positions. The operation of the Pseudo-processor is described in
Chapter 7.

Svc #28 ($1C)

PURPOSE: To return information about the version of CODOS which is running.

ARGUMENTS: none.

6-27

ARGUMENTS RETURNED:

> u

>
wou

High address byte of the System 8K RAM on the K-1013 disk controller

(Will always be $E0 on the MTU-130 system).
Release level of CODOS, expressed as two hex digits.
Code number indicating the kind of system on which CODOS is running.

Presently defined codes are:

UEWN =

DESCRIPTION:

SVC

For example an AIM system

register will contain the

MTU-130 with 8-inch floppy disk(s)
KIM-1 with 8-inch floppy disk(s)
AIM-65 with 8-inch floppy disk(s)
PET or CBM with 8-inch floppy disk(s)
SYM-1 with 8-inch floppy disk(s)

#28 ($1C) returns information about the particular version of the CODOS
system which is running.

hex digits.

numeric code
For example,

indicating

purpose of this SVC is to

The A register is the first page of System RAM for CODOS.

with System RAM at $8000-$9FFF will return A=$80. The X

Release level of the operating system, expressed as two
Release 2.0 will return X=$20. The Y register returns a
which target machine CODOS should be running on. The
provide a mechanism for a program to make decisions based

on the hardware and operating system environment.

EXAMPLE:

SVCENB 7 $EE

LDA #80

STA SVCENB

BRK

BYTE 28

cPY #3
ITSAIM

3MAKE SURE SVCS ARE ON

;GET INFO ABOUT SYSTEM

;BRANCH IF ITS AN AIM

This program segment tests the version of CODOS and branches to ITSAIM (not shown)

if CODOS is running on an AIM.

NOTES:

1. Additional codes for new systems will be defined as necessary.

6-28

SVC_#29 ($1D).

PURPOSE: To scan a device or file name/drive in preparation for ASSIGNment toa

channel, or to ascertain a file's status.

ARGUMENTS:

Y = Index to start of file or device name in buffer

U5 = Pointer to input buffer

ARGUMENTS RETURNED:

Yy Index to first character after file name/drive or device name in buffer.

A = status information as described below.

flags: Cy set if parsed name was a device name; Cy clear if parsed name was a
file name. The sign and overflow flag are set according to bits 7 and 6

respectively of the accumulator as described below.

U3 = Points to first character of file or device name in the buffer.

The status information returned depends on whether the device specified was a

file name (with or without drive specified) or a device name:

If the name was a device name (Cy set) then:

Bit 7 is set to 1 if the specified device does not exist.

Bits 6-0 contain the ASCII device name (1 character).

If the name was a file name (Cy clear) then:

Bit 7 is set to 1 if an illegal name or drive number was specified.

Bit 6 is set to 1 if the specified (or default) drive is not open.
Bit 5 is set to 1 if the file exists (i.e., an old file).
Bit 4 is set to 1 if the drive is write-protected.

Bits 3 and 2 are not used.
Bits 1 and 0 contain the drive number selected.

DESCRIPTION:

Svc #29 is a multi-purpose SVC which performs the following activities:

1. It scans and validates an input string of characters specifying a file

or device name. 7

2. It returns status bits so that the application program can gracefully
recover from any common file/device specification errors without aborting the

program, and can determine what type of file/device was specified.

3. It helps setup the necessary registers for using SVC #21 (Assign).

Svc #29 is normally used to parse a character string which specifies the name
of a file or device which is to be assigned to a channel for I-0. SVC #29 scans
the string, determines if the name is a device name or a file name, and checks it

for legality.

6-29

If the name is a legal device name, it checks to see if the specified device

exists on the system. For example, a printer may or may not be present. The

device name is returned in the A register so that the user may immediately use SVC

#21 to assign the device if all is in order.

If the name isa file name, it is checked for legality. An optional drive
number may be specified as part of the name if the name is terminated by a colon

followed by a digit. Blanks may be present between the colon and the digit. If no

drive is given as part of the string, the default drive (usually drive 0) will be
assumed. If the file name (and optionally the drive number) are legal, then SVC
#29 checks to see if the drive is open. If it is, then the disk is checked for
write protection. The directory is then searched for the file name. The status
bits of the A register return the results of these operations to the application
program. Upon completion of the SVC, the application program should verify that
the status bits returned in A reflect the desired conditions. If they do, then all
bits of A except bits 0 and 1 should be masked off and SVC #21 invoked to assign

the file. Note that SVC #29 automatically sets U3 to point to the file name.

EXAMPLE:

Suppose that a program is to serve as a user-defined command, with the first

argument to be the name of any device or file (optionally with drive number) which
is to be read for input to the program.

USRCOM «BYTE 0,12 3SVC #12 = QUERY I-O BUFFERS AND COMD ARG PTR IN Y¥
«BYTE 0,29 3PARSE THE ARGUMENT
BMI NOGOOD ;BRANCH IF ILLEGAL OR NON-EXISITANT DEVICE/FILE/DRV.

BCS ASGNIT ;BRANCH IF DEVICE SPECIFIED
BVS NOTOPN ;BRANCH IF DRIVE ISN'T OPEN
CMP #$20
BCC NOSUCH ;BRANCH IF NO SUCH FILE PRESENT
AND #$03 ;ELSE DISCARD ALL BUT DRIVE NUMBER

ASGNIT LDX #5 ;CHANNEL 5 TO BE USED
-BYTE 0,21 ;ASSIGN CHANNEL TO DEVICE OR FILE

This program segment first uses SVC #12 to get the address of the system input

buffer and a pointer to the argument which is presumably a device or file name. It
then uses SVC #29 to parse the first argument encountered. The return arguments
from SVC #29 are checked to make sure the file or device exists and is ready to be
read. If everything is OK, then control passes to ASGNIT which assigns the file or

device name just scanned to channel 5 in preparation for reading. If there isa
problem with the syntax of the argument or the file/device name, branches are taken

to appropriate error handling routines within the program (not shown).

NOTES:

1. SVC #29 does not indicate whether a file is locked. The ASSIGN SVC (#21)

however does indicate the locked/unlocked status of a file when assignment of a
channel to a file is completed.

2. SVC #29 is only available on MTU-130 versions of CODOS.

6-30

SVC_#30 ($1E).

PURPOSE: To obtain the current date.

ARGUMENTS:

Y = Index to desired start of nine character date field in buffer.

U6 = Pointer to desired output buffer.

ARGUMENTS RETURNED:

Y = Index to next available character after the date.

DESCRIPTION:

SVC #30 is used to obtain the current date, as entered during the normal CODOS

signon-procedure or by execution of the DATE command. The date field will be nine

characters long.

EXAMPLE:

SHODT BYTE 0,12 ;SVC #12 GETS BUFFER POINTER INTO U6
BYTE 0,2,6,"TODAY IS ',0 ;SVC #2 = OUTPUT MSG (ON CHANNEL 6)
LDY #0 ;SET INITIAL INDEX TO BEGIN OF BUFFER
BYTE 0,30 ;GET 9 CHARACTER DATE
LDX #6 ;CHANNEL 6
.BYTE 0,6 ;OUTPUT LINE

This program segment outputs line with a message such as:

TODAY IS 24-JAN-82

assuming that the date previously entered was "24-JAN-82".

NOTES:

1. The default date field is "*UNDATED*"

2. SVC #30 is available only on MTU-130 versions of CODOS.

6-31

CHAPTER 7.

16-BIT ARITHMETIC PSEUDO-PROCESSOR

This chapter describes the operation of the CODOS 16-bit Pseudo-Processor

("PP"), which is invoked by using SVC #27 (see Chapters 5 and 6 for general infor-
mation on SVCs).

GENERAL DESCRIPTION

The Pseudo-processor is a software simulation of a 16-bit Central Processing

Unit. The programmer can view it as an extension to the 6502 which provides 16
bit arithmetic and utility functions. The PP uses the Pseudo-registers U0 through

U7 in page 0 as its "registers", and uses the rest of memory as ordinary memory.

Executing an SVC #27 causes the PP to begin processing its instruction set begin-
ning with the next byte. It continues executing until a PP "UEXT" instruction is

encountered, at which time normal 6502-processing resumes at the next byte. The
primary value of the Pseudo-Processor to the programmer is that it provides a very

compact and easy-to-use method of performing 16-bit arithmetic, including multi-

plication and division, and also provides a simple way of computing 24-bit file
positions for random access files.

PP REGISTERS

The PP has eight "Pseudo-registers", U0 through U7, as shown in figure 7-1.

These are the same P-registers used for SVC processing. The Pseudo-processor uses

UO as its 16-bit accumulator. It operates in a manner similar to the 0502's "At
Tegister, but operates on 76-bits instead of 8 bits of data. The P-registers U1
through U6 are 16-bit general purpose registers which can be used to hold operands

for arithmetic operations or for holding addresses. In terms of the actual

location of the P-registers in memory, all P-registers have the least-significant

byte first and the most-significant byte at the next higher address, in the same

fashion as conventional 6502 addresses. P-register U7 is 24 bytes long. The
low-order 16 bits of U7 can be used just like any of the other general-purpose
pseudo-registers U1 through U6. The high byte of U7 is only affected by one
special instruction, specifically designed for the computation of a 24-bit file

position, which is explained later.

INSTURCTION SET

The PP has a very simple instructions set, to facilitate hand-assembly, with

16 instructions in the set. Three of the instructions are three bytes long; all
the rest are one byte instructions. The first byte is the operation code for the

instruction, and always contains two subfields: a4 bit operation field anda

4-pit register number. Thus every opcode is easily defined as two hex digits
where the first hex digit tells which of the 16 possible operations is to be
performed, and the second hex digit tells which register is to be used. The
complete instruction set is defined in table 7-1. For example, a $13 instruction

tells the PP to add the contents of Pseudo-register U3 to the Pseudo-accumulator,

UO, and store the result in the Pseudo-accumulator. Notice that unlike the 6502
instruction set, arithmetic operations operate on UO and another register, rather
than the accumulator and memory.

PSEUDO-PROCESSOR REGISTERS

Actual

Address Pseudo-Register Name

Tr PC aie eo
$00B0 ! ACCUMULATOR REGISTER UO

! iy u

ty gar cee ay cet ne ae eo
$00B2 ! REGISTER U1 !

! . !
An’ Ql a ear og eee © ails

$O0B4 ! REGISTER U2 !
! - !
ie ag . oe

$00B6 ! REGISTER U3 !

! A !
! . 7 al

$00B8 ! REGISTER U4 !

! !
etd ye i gen aa

$00BA ! REGISTER U5 !

! . !
ga Ot aie ae |

$O0BC ! REGISTER U6 !
! 5 i

! oe - = !

$00BE ! REGISTER U7 . !
! E a !

Figure 7-1

NOTES FOR FIGURE 7-1:

1. Values should be deposited with the least significant byte first.

2. Register U7 is three bytes long, with the least significant byte first and

the most significant byte at the highest address.

TABLE 7-1: CODOS PSEUDO-PROCESSOR (PP) INSTRUCTION SET

Operation

Code
$HI $LO # Mnemonic

oO 7 1 UEXT

1 n 1 UADD

2o 0 1 USUB

3 n 1 UMUL

5 n 1 UNUO
6 n 1 UOUN

L n 1 USWP

8 n 3 ULDI

E on 1 UJSR

"y 5 UNOP

n

n,addr

Description

Exit PP mode. Set the Z and N flags to reflect the value
in register Un, and return to normal 6502 execution mode.

The Carry flag reflects the last UADD or USUB result.

UO = UO + Un. 16-bit add. Carry flag set if carry
occurs out of most significant bit of result; otherwise,

earry is cleared.

UO = UO - Un. 16-bit subtract. Carry flag is cleared if
borrow occurred out of the most significant bit of
result; otherwise, carry is set.

uO = U0 * Un. 16-bit multiply. Carry not affected. Low
16 bits of product is in UO, and the high-order 16 bits
is in Un.

uo = UO / Un. 16-bit divide. Carry not affected.

quotient is in U0, and remainder is in Un. Aborts on
divide by 0.

UO = Un. 16-bit move, Un to UO. Un remains unchanged.
Un = UO. 16-bit move, U0 to Un. UO remains unchanged.
UO exchanged with Un. 16-bit exchange.
Un = val. 16-bit load immediate. First byte of val is

low-order byte, second is high-order byte.

Un = (addr). 16-bit load. The data at address addr is
placed in the low-order byte of Un and the data at addr+1

is placed in the high-order byte.

UO = (Un). 16-bit load UO register-indirect. The data
pointed to by register Un is loaded into the low byte of

UO, and the next byte is loaded into the high byte of UO.

(addr) = Un. 16-bit store. The low byte of Un is stored
in memory at address addr, and the high byte is stored at
addr+1.

(Un) = UO. 16-bit store UO register-indirect. The low
byte of UO is stored at the address in Un, and the high

byte is stored at the next higher address.

U7 = UO, Un. 24-bit move. Register UO is moved to the
low-order 16 bits of U7, and the low-order 8 bits of
register Un is moved to the most significant (3rd byte)
of U7. See note 3.
Call subroutine at (Un). Execute 6502-subroutine whose
address is in register Un. See note 5.

No operation. Reserved for future extensions, treated as

no-operation.

NOTATION USED: "n" = pseudo register number, 0 to 7, for UO through U7 respective-
ly. "Val" is 16-bit value or address. addr is 16-bit address. "#" means number
of bytes in the instruction. "$HI" is high nybble (4 bits) of opcode, and "$LO"
is low-order nybble.

NOTES FOR TABLE 7-1:

1. The $0n (UEXT) instruction exits the Pseudo-processor and SVC #27. When
normal 6502 operation is resumed, the 6502 registers will be Preserved in the state they were in on executing SVC #27, except for the Carry (C), Negative (N) and Zero (Z) flags in the processor status word. The Carry is returned in the
state which resulted from the last $1n (UADD) or $2n (USUB) operation. No other
PP operations affect the Carry. If no UADD or USUB was executed, the Carry will
be clear. The Z flag will be set if the register specified on the $0n (UEXT)
instruction was 0 (all 16 bits are 0); otherwise, the Z flag will be cleared. The
N flag will be set if bit 15 of the Pseudo-register specified on the $0n (UEXT)
instruction was 1; otherwise it will be cleared. This is the sign bit for 16-bit
two's complement arithmetic. The remaining flags in the processor status word are
not affected.

Dia All operations are performed in binary, regardless of the setting of the
decimal mode flag when SVC #27 is executed.

3. The $En (UNU7) instruction is normally used immediately after $4n (UMUL) to
obtain the first 24 bits of a 32-bit product in U7. This can be used to easily
compute the desired file position in a file of fixed-length records. See Example
3.

4, The byte following the $0n (UEXT) instruction should contain the first byte of
normal 6502 code.

5. The $En (UJSR) instruction executes a user-defined 6502 machine-language
subroutine whose address is in pseudo register n. On entry to the subroutine,
register A will contain the low-order byte of U0, register X will contain the
index needed to address register Un relative to register U0 (e.g., Oif n= 0, 2 ifn=1, 8ifns=4, ete.), and Y will be 0. The earry flag will reflect the
status of the last UADD or USUB operation; the Nand Z flags will reflect the
value of the low order byte of UO. The decimal mode flag will be clear. The
subroutine can destroy any registers but must return via an RTS with the stack
intact. The user subroutine may not use any SVCs.

6. Unlike the normal 6502 ADC and SBC instructions, the setting of the carry has
no effect on UADD or USUB.

7. The Pseudo-processor resides in one of CODOS's system overlays. Normally,
therefore, the first time SVC #27 is executed ina Program, CODOS will load the PP
from disk and execute it automatically. Although this loading is quite rapid
(typically a fraction of a second), it will be much longer than would be required
if the PP was already loaded. If the PP is to be used ina time-critical portion
of the program, you may want to "preload" the PP by executing a dummy SVC #27
prior to the time-critical portion of the code. CODOS will not reload the PP
overlay if it is already in memory.

8. Multiplication and division operations are unsigned.

EXAMPLES AND APPLICATIONS:

Assume the following lines of initialization and definitions preceed all

example solutions below:

SVCENB

5
ud
ul
v2

U3
U4
U5
U6

UT

$EE j;ADDRESS OF SVC ENABLE FLAG

$B0 316-BIT ACCUMULATOR FOR PP

$B2 ;16-BIT PSEUDO-REGISTERS...
$B4
$B6

$B8
$BA
$BC
$BE 324 BIT REGISTER

#$80

SVCENB ;ENABLE SVCS

Example 1: In preparation for using SVC #5 and SVC #6 for line-oriented I-0, setup

Pseudo-registers

MYBUFS.

DEFBUF BRK

«BYTE
«BYTE
. WORD

. BYTE
«WORD

. BYTE

U5 and U6 to point to two 80-character buffers starting at

27 ;SVC 27 ($1B) = ENTER 16-BIT PSEUDO PROCESSOR
$85 ;ULDI 5, (LOAD U5 IMMEDIATE...)
MYBUFS ;MYBUFS (..WITH DESIRED INPUT BUFFER ADDRESS)

$86 ;ULDI 6, (LOAD U6 IMMEDIATE...)
MYBUFS+80 ;MYBUFS+80 (...WITH ADDRESS OF OUTPUT BUFFER)

$00 ;UEXT 0 (EXIT PP MODE)

Note that above method uses 9 bytes of code, compared with 16 using the equivalent

conventional 6502 code shown in the example for SVC #5 and SVC #6.

Example 2: Compute 10 times the 16-bit value at $2000 through $2001 and store the

result at $2002 through $2003. If the result is 0, replace it with 1.

TENX

CONTIN

BRK
«BYTE
-BYTE
«WORD
- BYTE
- WORD
.BYTE
«BYTE

«WORD
. BYTE
BNE

LDA
STA

27 3SVC 27 ($1B) = ENTER 16-BIT PSEUDO-PROCESSOR
$81 ;ULDI 1, (LOAD U1 IMMEIDATE...)
10 310 (...WITH 10)
$90 ;ULDA 0, (LOAD UO ABSOLUTE...)

$2000 3$2000 (...WITH 16-BIT NUMBER AT ADDRESS $2000)
$31 ;UMUL 1 (MULTIPLY UO = UO * U1)
$B0 ;USTA 0, (STORE UO...)

$2002 3$2002 (...INTO ADDRESS $2002, $2003)
$00 ;UEXT 0 (TEST UO AND EXIT PP MODE)
CONTIN ;BRANCH IF UO IS NOT 0

#1 jELSE REPLACE RESULT WITH 1
$2002

This example illustrates how flags set by the PP may be used after the SVC #27.

Example 3: Channel 5 is assigned to a file containing fixed-length records of 325
bytes each. Given that the desired record number (0 through 999) is in U1, read
the selected record into a buffer at $2400.

RDREC BRK

.BYTE
«BYTE
«WORD
«BYTE
«BYTE
. BYTE
«BYTE
«WORD
«BYTE

LDX
BRK
BYTE
BRK

«BYTE

27
$80
325

$62
31

$01
$81
$2400
00
#5

19

15

3SVC 27 ($1B) = ENTER 16-BIT PSEUDO-PROCESSOR.
;ULDI 0, (LOAD UO IMMEDIATE...)
3325 (...WITH RECORD SIZE)
;UOUN 2 (COPY RECORD SIZE TO U2 FOR SVC 15 LATER)
;UMUL 1 (MULTIPLY RECORD SIZE * RECORD NUMBER)
;UNU7 1 (SET 24 BITS OF U7 TO RESULT)
;ULID 1 (LOAD U1 IMMEDIATE...)
3$2400 (...WITH DESIRED BUFFER ADDRESS)
;UEXT 0 (EXIT PP MODE)

;CHANNEL 5

3SVC 19 ($13) =

;SVC 15 ($0F) =

This example illustrates how the PP can be
files, even for files with greater than 65,535 bytes (the example file has 325,000
bytes of data).

7-6

POSITION FILE.

READ RECORD

used to setup for file positioning in

CHAPTER 8.

KEYBOARD AND TEXT DISPLAY I/O DRIVER (IODRIVER.Z)

The Keyboard and Text Display I/O Driver is a program that interfaces the key-
board and display hardware of the MTU-130 computer with CODOS, language interpre-

ters, assembly language programs, and in fact any program that does not contain its

own keyboard and display driver routines. In the case of user-written assembly

language programs, most normal interaction with the keyboard and display may be
performed through the SVC facility of CODOS. Please refer to sections 5 and 6 for

details on the functions available through SVCs. More sophisticated interaction
with these devices may be performed through direct calls to the Keyboard and Text

Display Driver as described in this section.

The keyboard and text display I/0 drivers are contained in the file IODRIVER.Z
which is normally loaded into memory by the START UP.J file. This driver package
has a number of entry points, each of which performs a specific function. A jump
table is provided for these entry points in the System Communications area in low

memory. These entry point addresses are fixed and are not expected to change over

the life of the MTU-130 product. The location and function of each entry point is
described below.

THE KEYBOARD DRIVER

The MTU-130 computer uses a software- scanned keyboard for flexibility. The

keyboard input driver has five entry points that make it easy for a program to use

the keyboard and which essentially hide its software-scanned nature. Three of

these entry points are used for inputting or testing keys individually. The other
two entry points are used for inputting or editing entire lines of text. These

routines also update the display to reflect the information being entered. Timer

T1 of the S¥S1 6522 I/0 chip is used by the keyboard driver to time the repeat

rate. The 4 cursor direction keys, space bar, BACKSPACE, DELETE, and RUBOUT will

automatically repeat if held down. All other keys may be forced to repeat by pres-
sing the REPEAT key simultaneously with the character key. See appendix H for the
character code generated by each key. Rollover and debouncing are handled fully by

the keyboard driver.

Several parameters located in fixed locations in the System Communication area

influence the operation of the keyboard driver. All parameters are set to default

values when CODOS is "booted up" but the programmer may wish to change them.

PARAMETER LOCATION DESCRIPTION

QLN $00FO Pointer to line-buffer used for INLINE and EDLINE
KBECHO $020F If bit 7=1 then "echo" each key to the display.
NOCLIK $0213 If bit 7=1 then no click when a key is pressed.

DBCDLA $0220 Wait time in milliseconds allowed for contact bounce.
RPTRAT $0221 Intercharacter repeat delay in 256uS units.
CURDLA $0222 Determines cursor blink speed, O=no blink.

CLKPER $0224 Click waveform period in units of 200 microseconds.
CLKVOL $0225 Click volume, $00 = minimum, $7F = maximum. ,
CLKCY $0226 Click duration in units of complete waveform cycles.
YLNLIM $0238 Line size limit for INLINE and EDLINE entry points.
UKINLN $023A If bit 7=1 then unrecognized keys are accepted for entry

points INLINE and EDLINE.

8-1

The keyboard driver entry points are described below. To use an entry point,

simply execute a JSR to the indicated address.

ENTRY POINT: GETKEY $0306

PURPOSE: To wait until a keyboard key is struck and return with character in A.

ARGUMENTS: None (see Chapter 10 for operational parameters)

ARGUMENTS RETURNED: A = Character code of key struck; X and Y preserved.

DESCRIPTION:

This entry point will wait indefinitely for a key to be pressed. While wait-

ing, a flashing text cursor will normally be displayed unless suppressed by
parameter setting.

ENTRY POINT: TSTKEY $030C

PURPOSE: To test if a key is pressed; has multiple recognition lockout.

ARGUMENTS: None

ARGUMENTS RETURNED: Carry is set if a key was down, clear if not. A = character

code of key seen down, if any. X and Y are preserved.

DESCRIPTION:

This entry point will scan the keyboard once looking for a key that is down.

If one is found down that has not been previously recognized as down, its code is
loaded into A and the Carry flag is set. If no keys are found down, the Carry flag

is cleared and A is loaded with an undefined value. The difference between this
entry point and the IFKEY entry point is that a key is recognized as down only

once until the operator releases it. This also applies to a key still down after
recognition by the GETKEY entry point.

ENTRY POINT: IFKEY $0360

PURPOSE: To test if a key is pressed without multiple recognition lockout.

ARGUMENTS: None

ARGUMENTS RETURNED: Carry is set if a key was down, clear if not. A = character
code of key seen down, if any. X and Y are preserved.

DESCRIPTION: This entry point will scan the keyboard once looking for a key that is

down. If one is found down, its code is loaded into A and the Carry flag is set.

If no keys are found down, the Carry flag is cleared and A is loaded with an

undefined value. The difference between this entry point and the TSTKEY entry
point is that a key may be repeatedly recognized as being down as long as the
operator holds it down.

8-2

ENTRY POINT: INLINE $031E

PURPOSE: To input an entire line from the keyboard, with editing permitted.

ARGUMENTS: None (see requirements for QLN below).

ARGUMENTS RETURNED: A = number of characters in the line, Y = 0, X preserved;
QLN points to the complted line.

DESCRIPTION:

This entry point accepts one line of text from the keyboard, and allows all the
line-editing functions permitted by CODOS. Editing functions include CTRL-B for
recalling prior lines, and automatic replacement of function keys with pre-defined
macro character strings. Please see Table 2-4 for a complete list of
available. In order to use this entry point, the calling routine MUST preset
location $00FO to the desired input-line buffer location before calling the entry
point. If you wish to use the normal CODOS line buffer, you should then set $00FO
to $00 and $00F1 to $05. Once called, the routine will not return until a complete
line has been entered, terminated by a carriage return. Function keys are automat-
ically expanded to the equivalent character string using the global function key
string table at address $0400, as described for the CODOS ONKEY command.

editing keys

Normally this routine will simply ignore any unrecognized control keys (such
as CTRL-D, for example) or unrecognized extended characters (such as the PF1 key,
for example). Setting the UKINLN flag at $023A will instead allow such characters
to be returned in the line buffer. The "strange" characters will not be echoed to
the screen, however.

The maximum number of characters which can be returned in the line is
determined by the value of YLNLIM (address $0238). The standard input buffer at
$0500 is large enough for 191 (decimal) characters, and this is the default value
for YLNLIM.

ENTRY POINT: EDLINE $0321

PURPOSE: To edit an entire line using the keyboard.

ARGUMENTS: Y=indexes the implied CR at the end of the line to be edited; QLN
(address $00F) points to start of line to be edited.

ARGUMENTS RETURNED: A = number of characters in the line, Y = 0, X preserved;
QLN points to the completed line.

DESCRIPTION:

This entry point is similar to INLINE, above, except that the input line buffer
is assumed to already hold a line to be edited when the entry point is called. The
keyboard can be used to edit or accept the line. The full range of editing keys
accepted by CODOS are available. To use this entry point, copy the desired line
into the buffer, install the address of the buffer in QLN (address $00FO), set Y
to the character count of the line, and call EDLINE.

8-3

THE TEXT DISPLAY DRIVER

The MTU-130 computer uses a bit-mapped dot matrix display format for extreme
flexibility in text and graphics display. Thus software is responsible for drawing
the individual dots that make up character patterns when conventional text display
is required. The text display driver has numerous entry points that make it easy
for a program to display "normal text" and essentially hide the display's software
intensive nature.

The video display is organized as 480 horizontal dots by 256 vertical dots.
Dot locations are defined by cartesian coordinates (X,Y) in the usual fashion where
(0,0) is the lower left hand corner of the screen and (479,255) is the upper right.
Calls to both the text display driver and the graphics display driver (described in
section 9) may be intermixed to provide the desired display.

Text is displayed in a text window which is always 80 characters wide. The
text window may be defined from 1 to 25 lines long, and defaults to 24. The top of
the text window is defined by the constant YTDOWN, measured in vertical dots down
from the top. YTDOWN may be defined from 0 to 245 and defaults to 0. The current
position of the text cursor within the text window is kept in variables COL (1 to
80) and LINE (1 to 25-10*YTDOWN). Please refer to section 9 if you wish to place
characters in arbitrary X and Y locations on the screen which do not fall into the
normal 24x80 "grid".

Characters are displayable horizontally only using a5 wide by 7 high dot
matrix ina 6 by 10 cell of dots. Where required, lower case characters are
displayed with descenders which drop 2 Y¥ positions below the baseline. Characters
may be underlined automatically under the control of a flag or may be underlined
individually by overstriking the underline character. For special applications, a
separate user supplied font using the same cell size may be selected by setting a
flag. The entire cell may be displayed in reverse video if desired, controlled by
a flag.

The text cursor normally consists of a blinking reverse video block displayed
at the current cursor position. It is automatically blinked by the keyboard-input
routine while waiting for input. Therefore the cursor is normally only displayed
when the computer is ready to accept keyboard input. The cursor can be drawn at
will by explicit calls to a routine, and 2an be totally disabled by setting a flag.
The keyboard input routine normally blinks the cursor at a selectable rate which
defaults to about 2Hz.

The text display driver also controls display of the function key legends.
When displayed, they occupy the bottommost 16 vertical dots for the full screen
width. The legends consist of two groups of 4 rectangular boxes each of which has
enough room to display an 8 character label. The text I/O driver draws the boxes
and displays the labels. Association of function key depression with specific
functions can be done by the user Program, or can use automatic substitution of
character strings as is available in normal CODOS command entry.

Several parameters located in fixed locations in the System Communication area

influence the operation of the text display driver. All parameters are set to

default values when IODRIVER.Z is executed. Some parameters, such as the current
eursor position, change during normal operation. You may also wish to alter or

examine certain of these parameters.

PARAMETER LOCATION DESCRIPTION

COL $0200 *’* Current column location of text cursor, 1 - 80.
LINE $0201 4/3 Current line number of text cursor, 1 - NLINET.

NLINET $021E Number of text lines in the text window.
YTDOWN $021F 255-(Y¥ coordinate of top of the text window).
CURDLA $0222 Determines cursor blink speed, O=no blink.

” NOLFCR $0210 5** If bit 7=1 then no automatic line feed after CR.
NOSCRL $0211 629 If bit 7=1 then instead of scrolling, the text window is

cleared and the cursor is homed when text goes beyond the

bottom line.
Y UNDRLN $0212 52 If bit then all characters underlined when drawn.

NOBELL $0214 If bit then BEL character is ignored.

“RVIDEO $0215 5°% If bit 7=1 then characters are drawn in reverse video.
SHODEL $0216 If bit 7 then display DEL (RUBOUT) as a character shape.

SHOUL $0217 If bit 7=1 then character cell is erased before the
underline character is drawn.

EXCCP $0218 If bit 7=1 then call user control character processor.

EXTHI $0219 If bit 7=1 then call user routine to process all characters

with bit 7 set.

EXFONT $021A If bit 7=1 then use external font table (see User Defined
Fonts at the end of this chapter).

BELPER $0227 Bell sound waveform period in units of 200 microseconds.

BELVOL $0228 Bell sound volume, $00 = minimum, $7F = maximum.
BELCY $0229 Bell sound duration in units of complete waveform cycles.

QEXCC $022F Address of external control character processor if used.

QEXFNT $0231 Address of external font table if used.
QEXHI7 $0233 ~ Address of external processor for characters with bit 7=1.

EXFTBK $0237 Memory bank number containing external font table.
TABTBL $06E0-O6FF Tab stop table. A tab stop is located at the column number

specified by cach non-zero byte. See OUTCH entry point for

details.

LEGTBL $05CO-O5FF Function key legend table. Contains 8 groups of 8 char-
acters which are the displayed legends for the 8 function

keys. The label for the f1 key is first. See DRWLEG entry

point for details.

KEYSTR $0400-O4FF Function key substitution string table. Contains 8 groups
of 32 characters which represent the the character
strings to be substituted for the associated function keys

when using the input-line or edit-line functions. See

INLINE entry point for details.

8-5

The following describes the entry points into the text display driver.

ENTRY POINT: OUTCH $0309

PURPOSE: To display a printable character or interpret a control character.

ARGUMENTS: Character to be displayed or interpreted in A.

ARGUMENTS RETURNED: None, A, X, and Y registers preserved.

DESCRIPTION:

This entry point is used for general text display. If the character is print-

able (i.e., not a control or extended character), it is displayed at the present
cursor position as defined by COL and LINE. The cursor is then moved one position

to the right (COL incremented). If the cursor tries to go beyond the right end of
the present row (COL 80), it is returned to the left edge of the screen (COL=1) and
down one line (LINE incremented). If the cursor tries to go beyond the text window
bottom (LINE NLINET), then the entire text window scrolls upward instead. If
NOSCRL is set, the text window would be cleared and the cursor placed in the upper
left corner (COL=1, LINE=1) instead. If RVIDEO is set, the character will be drawn
in black against a white background. If UNDRLN is set, the character will be

underlined as it is drawn. All printable characters except the underline first

erase the 6 by 10 character cell before being drawn.

If the character is an ASCII control character, action is according to the

following table:

CODE NAME ACTION

$0D CR Carriage return, moves cursor to left screen edge (COL=1) and
also performs LF function unless NOCRLF flag is set.

$0A LF Line feed, advances to next lower line without affecting column.
If already on bottom line (LINE=NLINET) then scrolls display up
one line unless NOSCRL flag is set. If NOSCRL is set then text

window is cleared and LINE is set to 1.

$08 BS Backspace, move cursor left 1 character without erasing the char-
acter.

$09 HT Tab, move COL to next tab stop in tab table. If beyond last
valid tab stop, no action.

$18 can “X Cancel, clear current display line, set COL to 1. Does not
change LINE.

A
$07 BEL & Bell, sound audio tone unless NOTONE is set.

$0C FF A Form feed, clear text window, home the cursor to the upper left

corner (sets COL=1 and LINE=1).

$7F RUBOUT Rubout, performs equivalent to Backspace, Space, Backspace unless

(DEL) SHODEL flag is set in which case it displays a checkerboard char-
acter shape.

8-6

If the character is an extended character (bit 7=1, presumably from one of the

special keys on the keyboard), action is according to the following table:

CODE NAME

$A0

$A1

$A2

$A3

$a4

$8A

$8B

$8C

$8D

$8E

$B4

HOME

ENTER

ACTION

Cursor up, move cursor up one line unless already at top of text

window (LINE=1).

Cursor left, translate to BS and process as a BS character ($08).

Cursor right, move cursor right one without erasing unless

already at right edge of screen (COL=80).

Cursor down, translate to LF and process as a LF character ($0A).

Cursor home, move cursor to left screen edge at top of text

window (COL=1, LINE=1).

Multiply, print * symbol on screen.

Divide, print / symbol on screen.

Subtract, print - symbol on screen.

Add, print + symbol on screen.

Translate to CR and process as a CR character ($0D).

SHIFT/HOME Shifted HOME, translate to FF and process as a FF character($0C).

If the EXTHI flag is set, a user supplied external subroutine is called to handle

extended characters instead.

ENTRY POINT:

PURPOSE:

ARGUMENTS:

CLRDSP $0312

To clear the entire 480 by 256 screen.

ARGUMENTS RETURNED: None, A, X, and Y registers preserved.

DESCRIPTION:

This entry point is used to clear the entire screen including the legend boxes. If

you want to clear only the text window, use the CLRHTW entry point, or use the

OUTCHR entry point with an argument of $0C (form feed).

8-7

ENTRY POINT: DRWLEG $0315

PURPOSE: To draw the function key legend boxes and their labels.

ARGUMENTS: The 64 bytes of legend labels from $05CO - $05FF.

ARGUMENTS RETURNED: None, registers not preserved.

DESCRIPTION:

This entry point erases the existing legend area (bottom 16 scan lines of the

display area) and draws 8 legend boxes each containing an 8-character function key
legend. The boxes and legends are displayed in two groups of 4 like the function

keys on the MTU-130 keyboard. The legends to be used are ASCII strings of exactly

8 characters each, which must be predefined in the legend table ($5C0-$5FF). Non-
displayable characters (control or characters with bit 7 set) are treated as if

they were blanks. The characters are drawn in normal mode (no underlining or

reverse video). If an external font table is specified (EXFONT flag set), then it
is used to draw the legend characters. The position of the text cursor (COL, LINE)

is not affected.

ENTRY POINT: INITIO $030F

PURPOSE: To clear the screen and set default values of display parameters.

ARGUMENTS: None.

ARGUMENTS RETURNED: None, registers not preserved.

DESCRIPTION:

This routine completely re-initializes the text display driver and is useful if

its previous state is unknown. It performs the following functions:

1. Clears entire 480 by 256 screen area.

2. Clears all function key legends %o blanks.

3. Clears function key substitution strings to the null string ($80).

4. Draws the function key legend boxes.

5. Sets text window to 24 lines starting at top of the screen.

6. Text cursor is placed in the home position (COL=1, LINE=1)

7. All text driver flags (NOLFCR, NOSCRL, UNDRLN, etc.) are cleared.

8. The keyboard driver is initialized.

9. The audio DAC is initialized.

8-8

ENTRY POINT: INITTW $0363

PURPOSE: To initialize the text window to 24 lines and clear the text window only.

ARGUMENTS: None

ARGUMENTS RETURNED: Registers are not preserved.

DESCRIPTION:

This routine re-initializes the text display driver. It performs the following

functions:

1. Sets text window to 24 lines starting at top of the screen.

2. Text cursor is placed in the home position (COL=1, LINE=1)

3. All text driver flags (NOLFCR, NOSCRL, UNDRLN, etc.) are cleared.

4. The audio DAC is initialized.

ENTRY POINT: DEFTW $0366

PURPOSE: To set the position and size of the text window.

ARGUMENTS: A
Y

desired number of text lines, 1 - 24.

position of top of window (number of scan lines down from top).

ARGUMENTS RETURNED: None, only X register is preserved.

DESCRIPTION:

This routine defines the size and position of the text window. The requested

number of text lines must fit between the specified top position and the bottom of

the screen (255) at the rate of 10 scan lines per character line.

ENTRY POINT: CLRHTW $0369 $73

PURPOSE: To clear the text window and home the cursor.

ARGUMENTS: None

ARGUMENTS RETURNED: None, all registers preserved.

ENTRY POINT: HOMETW $036C

PURPOSE: To place the cursor in the home position (COL=1, LINE=1)

ARGUMENTS: None

ARGUMENTS RETURNED: None, all registers preserved.

ENTRY POINT: CRLF $036F

PURPOSE: To move cursor to the left screen edge and down one line.

ARGUMENTS: None

ARGUMENTS RETURNED: None, all registers preserved.

DESCRIPTION:

This routine performs the same as the OUTCH entry point with an argument of $0D

(CR).

ENTRY POINT: CLRTW $0372 %%2

PURPOSE: To clear the text window without moving the cursor.

ARGUMENTS: None

ARGUMENTS RETURNED: None, all registers preserved.

ENTRY POINT: CLRLEG $0375 (55D

PURPOSE: To clear the legend display area (bottommost 16 scan lines).

ARGUMENTS: None

ARGUMENTS RETURNED: None, only X and Y are preserved.

ENTRY POINT: CLRTLN $0378

PURPOSE: To clear a specified text line.

ARGUMENTS: A = line number to be cleared, 1<= A<= NLINET

ARGUMENTS RETURNED: None, only Y is preserved.

ENTRY POINT: LINEFD $037B

PURPOSE: To move the cursor down one text line.

ARGUMENTS: None.

ARGUMENTS RETURNED: None, only X and Y are preserved.

DESCRIPTION:

This routine performs the same as the OUTCH entry point with an argument of $0A

(LF).

ENTRY POINT: OFFTCR $037E

PURPOSE: To turn the text cursor off if it is on.

ARGUMENTS: None.

ARGUMENTS RETURNED: None, all registers are preserved.

ENTRY POINT: ONTCR $0381

PURPOSE: To turn the text cursor on.

ARGUMENTS: None.

ARGUMENTS RETURNED: None, all registers are preserved.

ENTRY POINT: FLPTCR $0384

PURPOSE: To flip the video sense of the cursor at the cursor position.

ARGUMENTS: COL = column number of character to be flipped.
LINE = line number of character to be flipped.

ARGUMENTS RETURNED: None, all registers are preserved.

ENTRY POINT: BEEP $038D Gee)

PURPOSE: To sound an audible beep.

ARGUMENTS: A = volume in range of $00 (silence) to $7F (maximum), $40 is normal.
duration in complete waveform cycles, 1-255, 0=256.

Waveform period in units of 200 microseconds. KOS

ARGUMENTS RETURNED: None, all registers are preserved.

USER DEFINED FONTS

The Text Display I/O Driver has provisions for use of an external user-
character font. To use an external font table, first store the address of the
external table in location $0231 (low) and $0232 (nigh). Install the bank number
containing the font table into location $0237 (default is 0). Then to enable the
external table, set bit 7 of the EXFONT flag at location $021A to a one. Following
these actions, all characters subsequently drawn on the screen will refer to the
external font table until the EXFONT flag is cleared. You may switch back and
forth between the normal and alternate font by merely toggling bit 7 of EXFONT.

defined

The text display driver uses a basic cell structure of 7 rows of 5 dots for a
character. The font table therefore consists of 7 bytes for each character where
the leftmost 5 bits of each byte represent the 5 dots for that row. For example,
the font table entry for a letter "A" would be as follows:

Byte0 001000 ## $20
? 01010000 —= $50 * This bit is the descender

10001000 = $88 flag, see text.
Ted VOT 02-00 $F8
10001000 $88 # This bit is the "J dot"

: 10001000 = $88 flag, see text.
Byte 6 10001000 —= $88

The first 7 byte table entry corresponds to the ASCII code $20, the next 7 bytes to
$21, etc. up to $7F.

Normally the character is drawn so that the bottommost dot row rests on the
baseline. If the descender flag bit is on (see * note above), the entire 5 by 7
matrix is shifted two dot rows downward as it is drawn. This is normally used when
drawing lower case characters such as 5;8,y,D and q. For descended characters
requiring a dot outside the 5X7 matrix area (such as the lower case j) the "J dot"
flag bit should be a one. This will cause a centered dot to be Placed two rows
above the top row of the descended character.

EXTERNAL HANDLING OF ASCII CONTROL CHARACTERS

The Text Display I/O Driver has provision for external handling of the ASCII
control characters, i.e., those between $00 and $1F inclusive. To use an external
control character processor, first place its address in location $022F (low) and
$0230 (high). Then to enable the external Processor, set bit 7 of the EXCCP flag
at location $0218 to a one. Following these actions, all control characters
received by the OUTCH entry point will be passed to the external routine until the
EXCCP flag is cleared. You may switch back and forth between noraml and special
handling of control characters by merely toggling bit 7 of EXCCP.

The external routine is entered with the ASCII control character code in the A
register, and X and Y undefined. The external routine must save and restore an:
register it uses, and may also make balanced use of the stack. ‘Any of the entry
Points described earlier except QUTCH may be called by the external routine. The
external routine must exit by using an RTS instruction.

EXTERNAL HANDLING OF EXTENDED CHARACTERS

The Text Display I/O Driver has provision for external handling of the extended

characters, i.e., those that have bit 7 set. To use an external extended character
processor, first place its address in location $0233 (low) and $0234 (high). Then
to enable the external processor, set bit 7 of the EXTHI flag at location $0219 to

a one. Following these actions, all extended characters received by the OUTCH
entry point will be passed to the external routine until the EXTHI flag is cleared.

The external routine is entered with the extended character code in the A

register, and X and Y undefined. The external routine must save and restore any

register it uses, and may also make balanced use of the stack. Any of the entry
points described earlier except OUTCH may be called by the external routine. The

external routine must exit by using an RTS instruction.

CHAPTER 9.

GRAPHICS DISPLAY I/O DRIVER (GRAPHDRIVER.Z)

The Graphics Display I/O Driver is a program that interfaces the display
generator, light pen, and keyboard of the MTU-130 computer with assembly language
programs and language interpreters that need to utilize the graphics capabilities
of these devices. The graphics functions provided are as follows:

1. Plotting points and vectors given cartesian X and Y coordinates.

2. Drawing text characters at arbitrary X and Y locations.

3. User input of position information using a graphic cursor and the keyboard.

4, User input of position information using the light pen.

The Graphics Display I/O Driver (file GRAPHDRIVER.Z) has a number of entry
points which may be called to perform various functions. A jump table for these
entry points is provided in the system communications area of memory, and is not
expected to change. The Graphics driver software also requires the presence of the
standard text I-0 driver software (file IODRIVER.Z). Both these files are noramlly
loaded by the STARTUP.J file. In order for the graphics drivers to work, the
GRAPHDRIVER.Z file must be loaded AFTER the IODRIVER.Z file has been loaded and
initialized (by executing it).

GRAPHICS PARAMETERS

The MTU-130 display screen is actually just a very large matrix of dots, each
of which may be on (a tiny spot of light) or off. Each of the 122,880 dots is
independent of the others which means that any kind of image can be constructed
with the proper software. The dot array consists of 256 rows of dots with 480 dots
in each row. The location of any dot can be specified by giving its X and Y
coordinates as illustrated below:

Y=255

Y=0
X=0 X=479

X defines the column number and can range between 0 and 479. Y defines the row
number and can range between 0 and 255. Both coordinates are considered to be two
byte quantities even though only X really requires two bytes. The least signif-
icant byte of coordinates is always first, like 6502 memory addresses.

Arguments to the graphics routines are generally stored in dedicated locations
in memory. These locations are described below:

PARAMETER LOCATION DESCRIPTION

xc $0202 51 X coordinate of the graphic cursor position, 2 bytes.

Yc $0204 5/6 Y coordinate of the graphic cursor position, 2 bytes.

XX $0206 * X graphic coordinate "register", 2 bytes.
yy $0208 * Y graphic coordinate "register", 2 bytes.
GMODE $020A Graphic drawing mode, $00=move, $40=erase, $80=draw,

$CO=flip. Add $20 for dashed lines.
DSHPAT $020B Recirculating dashed line pattern, each 1 bit=dot on, 2

bytes.

NOTE: On all entry points, automatic bounds checking is performed as follows. If
XC or XX is negative, it is set to 0 or if greater than 479 it is set to 479. If
YC or YY is negative, it is set to 0 or if greater than 255 it is set to 255. For

relative coordinates, the sum of the cursor and displacement coordinates is correc-

ted as above.

ENTRY POINTS FOR GRAPHIC DISPLAY DRAWING

The following entry points are used for drawing points, lines, and characters
on the MTU-130 display. Calls to these entry points may be intermixed with calls

to the Text Display Driver described in section 8.

ENTRY POINT: SDRAW $0324

PURPOSE: To draw a solid vector from the cursor to (XX,YY).

ARGUMENTS: XC,YC
XX, YY

coordinates of initial endpoint.
coordinates of final endpoint.

ARGUMENTS RETURNED: XC,YC are set to the coordinates of the final endpoint.
GMODE is set to $80.
A, X, and Y are preserved.

DESCRIPTION:

SDRAW unconditionally draws a solid white line between specified endpoints. The

setting of GMODE and DSHPAT have no effect on the line drawn. When drawing is
complete, XC and YC will be set to the final endpoint coordinate in preparation for
another vector connected to the vector just drawn.

ENTRY POINT: SMOVE $0327

PURPOSE: To move the graphic cursor to (XX,YY¥) without drawing.

ARGUMENTS: XX,YY = coordinates of point to move to.

ARGUMENTS RETURNED: XC,YC contain a copy of XX,YY.

A, X, and Y are preserved.

ENTRY POINT: SVEC $0330

PURPOSE: To draw a vector from the cursor to (XX,YY) according to GMODE and DSHPAT

ARGUMENTS: XC,YC coordinates of initial endpoint.

XX, YY coordinates of final endpoint.

GMODE = Type of line to be drawn.
DSHPAT = Dashing pattern if GMODE specifies a dashed line.

ARGUMENTS RETURNED: XC,YC are set to the coordinates of the final endpoint.
A, X, and Y are preserved.

DESCRIPTION:

SVEC draws a line starting at XC,YC and ending at XX,YY. When drawing is complete,

XC and YC will be set to the final endpoint coordinate in preparation for another

vector connected to the vector just drawn. The appearance of the line drawn

depends on the setting of GMODE according to the table below:

GMODE LINE TYPE

$00 Move
$40 Erase (draw black line)
$80 Draw (draw white line)
$cO Flip (flip pixel state along line)
$60 Erase dashed
$a0 Draw dashed
$E0 Flip dashed

The DSHPAT parameter can be considered to be a 16 bit loop-around shift register.

The register is rotated left one position for every pixel plotted when GMODE calls

for a dashed line. If the bit looped around DSHPAT isa 1, then the pixel is

"drawn" according to GMODE. If the bit looped around is a 0, then the pixel is

skipped. DSHPAT is not reset by any entry point; it just recirculates whenever a

dashed line is drawn. The default contents of DSHPAT are $FOFO which gives dashes

4 dots long separated by 4 dots of blank space.

ENTRY POINT: SDOT $0336

PURPOSE: To draw a single dot (pixel) at (XX,YY) according to GMODE.

ARGUMENTS: XX,YY = coordinates of dot to draw.
GMODE = Type of dot to be drawn.

ARGUMENTS RETURNED: XC,YC are set to the coordinates of the dot.
A, X, and Y are preserved.

DESCRIPTION:

SDOT plots a single dot at (XX,YY) according to GMODE. After the dot is plotted,

XX,YY will be copied into XC,YC. The appearance of the dot depends on the setting

of GMODE according to the table below:

GMODE DOT TYPE

$00 Move (no display change)
$40 Erase (draw black dot)
$80 Draw (draw white dot)
$co Flip (flip dot from white to black or black to white)

9-3

ENTRY POINT: SDRAWR $032A

PURPOSE: To draw a solid white vector relative to the cursor.

ARGUMENTS: XC,YC = coordinates of initial endpoint of the vector.

X = Signed X displacement of final endpoint from XC (-128 to +127).
Y = Signed Y displacement of final endpoint from YC (-128 to +127).

ARGUMENTS RETURNED: XC,YC and XX,YY are set to the absolute coordinates of the
final endpoint.

A, X, and Y are preserved.

DESCRIPTION:

SDRAWR is similar to SDRAW except that the final endpoint coordinates are deter-

mined differently. The line drawn starts at XC,YC and ends at XC+X,YC+Y where X
and Y are the contents of the X and Y machine registers. After drawing, both XC,YC
and XX,YY are updated to the coordinates of the final endpoint in preparation for

another line.

ENTRY POINT: SMOVER $032D

PURPOSE: To move the graphic cursor relative to its present position.

ARGUMENTS: XC,YC = coordinates of initial position graphic cursor.

xX Signed X displacement of final position from initial positon.

pe Signed Y displacement of final position from initial position

ARGUMENTS RETURNED: XC,YC and XX,YY are set to the absolute coordinates of the
final position.

A, X, and Y are preserved.

DESCRIPTION:

SMOVER is similar to SMOVE except that the final position coordinates are deter-

mined differently. The new cursor position is XC+X,YC+Y where XC,YC is the old
position and X and Y are the contents of the X and Y machine registers. After

moving, both XC,YC and XX,YY are updated to the new position.

ENTRY POINT: SVECR $0333

PURPOSE: To draw a vector relative to the cursor according to GMODE and DSHPAT.

ARGUMENTS: XC,YC = coordinates of initial endpoint of the vector.
X = Signed X displacement of final endpoint from XC.
Y = Signed Y displacement of final endpoint from YC.
GMODE = Type of line to be drawn.

DSHPAT = Dashing pattern if GMODE specifies a dashed line.

ARGUMENTS RETURNED: XC,YC and XX,YY are set to the absolute coordinates of the
final endpoint.

A, X, and Y are preserved.

DESCRIPTION:

SVECR is similar to SVEC except that the endpoint coordinates are computed as in

SDRAYR. See SVEC and SDRAWR descriptions for details.

9-4

ENTRY POINT: SDOTR $0339

PURPOSE: To draw a single dot (pixel) at a position relative to the cursor

according to GMODE.

ARGUMENTS: XC,YC = Present cursor position.

X = Offset of point from cursor position in X direction.

Y = Offset of point from cursor position in Y direction.

GMODE = Type of point to be drawn.

ARGUMENTS RETURNED: XC,YC and XX,YY are set to the coordinates of the dot.
A, X, and Y are preserved.

DESCRIPTION:

SDOTR is similar to SDOT except that the coordinates of the dot are determined
differently. The dot coordinates are XC+X,YC+Y where XC,YC is the cursor position
and X and Y are the contents of the X and ¥ machine registers. After plotting the

point, both XC,YC and XX,YY are updated to its position. See SDOT discription for

more information.

ENTRY POINT: SDRWCH $0345

PURPOSE: To draw a single character at (XX,YY).

ARGUMENTS: XX,YY = Coordinates of lower left corner of 6 by 10 character matrix.

A = ASCII character code in range of $20 - $7F.

ARGUMENTS RETURNED: XC,YC position of character just drawn (copy of XX,YY).
XX,YY position of next character to draw (XX=XX+6, YY=YY).

A, X, and Y are preserved.

DESCRIPTION:

SDRWCH may be used to draw characters at any arbitrary location on the screen. The

character cell used is 6 dots wide by 10 dots high into which a character 5 dots

wide by 7 dots high is written as illustrated below:

2 -0000 ree 0 ope

0.0 210: . ie} oe BAO see oe

One, are 02 20 . Or «0.009 2 40 ie) oe
O: 3g: e210 0: 00:20; 2 702s © 10:5. 00 Oo.
oo0000.0. OmeO' ~0.0 oO
Oe eh O 5.0 3 OMS Org 8 O20 42:0 2.0.

One OOO 00 35 4580.0 440 6 0) 5 Ons
Character a Phd ee oO ar A ae .
coordinates ete ee »~.000 .

9=5

The character's coordinates refer to the lower left corner of the 6 by 10 cell.
The character's baseline is normally 2 dot rows above the bottom of the cell but
lower case characters with descenders (g,j,p,q,y) will extend down to the bottom of
the cell. The entire 6 by 10 character cell is cleared before the character is
drawn so it may be desirable to draw characters first and then any graphics that
might overlap portions of the cell. After the character is drawn, XX is incremen-
ted by 6 in preparation for another character. Thus labels for charts and graphs
may be drawn easily by repeated calls to SDRWCH. The XX value must be between 0
and 474 inclusive and the YY value must be between 0 and 247 inclusive. If either
is out of range, the character will not be drawn at all. Only printable ASCII

character codes ($20-$7F) may be drawn, all other codes will not be drawn.

ENTRY POINT: SISDOT $0348

PURPOSE: To determine whether pixel at (XX,YY) is on or off.

ARGUMENTS: XX,YY = Position of pixel to test.

ARGUMENTS RETURNED: A=0 if pixel is off, nonzero if on.

XC,YC set equal to XX,YY

X and Y are preserved.

ENTRY POINT: SONGC $034E

PURPOSE: To turn on the graphic crosshair cursor.

ARGUMENTS: XC,YC = Position of graphic cursor.

ARGUMENTS RETURNED: None, A, X, and Y are preserved.

DESCRIPTION:

The graphic crosshair cursor consists of a full screen height vertical line drawn
at the horizontal position specified by XC and a full screen width horizontal line
drawn at the vertical position specified by YC. The crosshair cursor is drawn in
flip mode which means that parts of an image it covers will be restored when it is
later turned off with the SOFFGC entry point. Flip mode also means that the cursor
will show up regardless of the background color of the screen.

ENTRY POINT: SOFFGC $034B

PURPOSE: To turn off the graphic crosshair cursor.

ARGUMENTS: XC,YC = Position of graphic cursor.

ARGUMENTS RETURNED: None, A, X, and Y are preserved.

DESCRIPTION:

This entry point turns the graphic cursor off that had been previously turned on by
the SONGC entry point. For proper operation, the value of XC and YC must be the
same as they were when the cursor was turned on.

9-6

ENTRY POINTS FOR USER COORDINATE INPUT

The following entry points are used for convenient operator input of position

data using either the light pen or the keyboard. The light pen is best for point-

ing out objects that already exist on the screen or for very rapid coordinate

input, i.e., drawing directly on the screen. The keyboard is best for very precise

(to the pixel) location of coordinates where speed of input is less important.

ENTRY POINT: SGRIN $033C

PURPOSE: To allow user coordinate input by maneuvering a cursor with the keyboard

eursor control keys.

ARGUMENTS: XC,YC = Initial position of graphic cursor.

ARGUMENTS RETURNED: XX,YY = user selected position of cursor.
A = ASCII code of key pressed to terminate the input.

XC, YC, X and Y are preserved.

DESCRIPTION:

This routine activates a rapidly blinking full-screen crosshair cursor which can be

maneuvered using the cursor keys on the keyboard. It remains active until a non-

eursor key is struck. It then returns the coordinates and ASCII code. The shifted

cursor control keys move the cursor 5 times as fast as the unshifted cursor keys.

HOME is not considered a cursor key by SGRIN.

ENTRY POINT: SLTPEN $033F

PURPOSE: Activate light pen for one frame and return coordinates of hit, if any.

ARGUMENTS: None.

ARGUMENTS RETURNED: Cy set if pen saw light, cleared if not.
XX,YY = Coordinates of hit, if any.
XX, YY, X and Y are preserved only if no hit.

DESCRIPTION:

This entry point first waits for the end of the current screen scan and then
begins checking for a light pen "hit" (response to light from the screen). If

light is seen during the next screen scan, the X and Y coordinates of the beam

position when the hit occurred are placed in XX,YY and the carry flag is turned on.
If no light is seen during the scan, the carry flag is turned off. The maximum

amount of time spent in this routine is 33 milliseconds when no light is detected.

The time varies from less than 1 to a maximum of 32 milliseconds when light is
detected. The X and Y coordinates returned have resolution to the pixel level but

a random variation up to + or - 2 coordinate units can be expected.

9-7

Light pens of course can only respond to areas of the screen that emit light.

For this the light pen is well suited for quickly selecting one object from a group

on the screen merely by pointing at it. Two methods may be used for "drawing"

lines and curves on a blank screen. One is to display a "tracking" pattern such as

a solid square 5 to 7 pixels high and wide. If the point coordinates returned by
SLTPEN are not the center of the tracking pattern, it is erased and redrawn

centered around the new coordinates. By doing this in a loop, the pattern will
appear to "follow" the pen's movement and the program can save successive positions
of the pattern. The other method is to simply fill a portion or all of the screen

with white and then store the series of coordinates generated by repeated calls of
SLTPEN. The points could even be plotted in black as they are generated with

little effect of the pen's operation.

IMPORTANT NOTE:

The light pen will generally not respond to features less than 2 pixels wide

horizontally. Thus single dots and vertical lines that are only one pixel wide

will be invisible to the pen unless the screen brightness is very high.

ENTRY POINT: SINTLP $0351

PURPOSE: Wait for end of frame and then activate the light pen.

ARGUMENTS: None.

ARGUMENTS RETURNED: None, X and Y are preserved.

ENTRY POINT: STSTLP $0354

PURPOSE: Test for light pen hit and return coordinates if a hit.

ARGUMENTS: None.

ARGUMENTS RETURNED: Cy set if pen saw light previously, cleared if not.
XX,YY = Coordinates of hit, if any.

XX, YY, X and Y are preserved only if no hit.

DESCRIPTION:

STSLP makes an immediate test of the light pen "hit" status and then quickly

returns. Any amount of time may elapse between a light pen hit and when STSTLP is
called to compute the X and Y coordinates of the hit.

9-8

CHAPTER 10.

SYSTEM CUSTOMIZATION

System customization (often called "system generation") is the procedure for

"customizing" CODOS to a particular machine configuration and set of operator

preferences. Since the MTU-130 may be equipped with from 1 to 4 disk drives and

any of a variety of printers (or no printer at all) and other I/O devices, provi-

sion has been made for accommodating alterations with a minimum of difficulty. The

Setup and Installation manual tells how to get your system going the first time.

This chapter tells how to avoid unecessary preamble when starting-up your system.

Once "Customized", the modifications become a permanent part of the system on disk.

When the system is booted-up, the operating system will be immediately ready to

respond to your needs. The MTU-130 is equipped with a number of utility programs

and built-in capabilities for self-modification, which are described briefly below

and in more detail later in this section.

First-time Power-up Procedures

The first-time-power-up procedures are discussed in the Setup and Installation

manual which is the first manual in the MTU-130 system notebook. In particular,

the startup procedures establish, on a temporary basis, the number of disk drives

in the system. This attribute is only patched into memory, however, and will be

lost as soon as power is removed from the system. Therefore two interactive Utili-

ty programs are provided to permanently update the operating system on disk.

System Generation Utility Programs

The SYSGENDISK Utility program is provided to adjust CODOS for the number of

disks in your system, and to "fine tune" the system to get the most out of your

particular disk drives. You should run SYSGENDISK after you have copied the Dis-

tribution diskette to your first working diskette. Normally, you will only run

this Utility program once, unless you change the number or type of disk drives in

your system. SYSGENDISK is described in detail later in this section.

The SYSGENDEVICE Utility program is provided to add new Input-Output devices to

CODOS. Once you have defined a new I-O0 device, you can assign channels to it and

perform any input or output desired. You will want to run this Utility program

whenever you add anew peripheral I-O device such as a printer to your system.

SYSGENDEVICE is described in detail later in this section.

The SYSGENPRINTR Utility program is provided to automatically generate a

machine language printer driver routine for almost any kind of printer which you

might want to use on the MTU-130. It is a conversational program which asks you
questions about your printer and then writes a machine language program which you

may use immediately. SYSGENPRINTR is described in detail later in this section.

STARTUP.J File

Another feature of CODOS which greatly facilitates customization is the

STARTUP.J file. When CODOS is booted-up, it first loads the operating system into

memory. It then will read a list of CODOS Monitor commands froma file called

STARTUP.J, and execute them just as though they were typed by you at the Console.

Therefore if you have any special needs for your system, they can be attended to

without operator intervention at this time. For example, if you need to load your
various device-drivers into memory or wish to modify the keyboard repeat speed, you

can let the STARTUP.J file do this for you. More information on modifying the

STARTUP.J file is provided later in this section.

10-1

CUSTOMIZING DISK ATTRIBUTES WITH THE SYSGENDISK UTILITY PROGRAM

The version of CODOS shipped with the MTU-130 computer is set up to be usable

on the broadest possible range of MTU-130 hardware configurations. This means

however that as received, CODOS is unlikely to be optimized for your particular

hardware configuration and desires. The SYSGENDISK utility is provided to allow

you to easily optimize CODOS. Note that in all cases except one, running SYSGEN-
DISK is optional; if the default parameters are acceptable, it need not be run.

The one exception is systems that have only one disk drive. If you don't run

SYSGENDISK to customize CODOS for single drive operation, you will have to make the
first-time- power-up patch described in the Setup and Installation manual every

time you turn the system on. 2

SYSGENDISK allows you to modify the following disk system parameters (values in

parentheses are the default values on the Distribution disk):

1. The number of disk drives in the system (2)

2. The number of disk buffers in the system (6)

3. The disk drive track-to-track step time (8 milliseconds)

4, The disk drive head load time (50 milliseconds)

The meaning and selection of each of these parameter values is described in the

following sections, followed by a description of SYSGENDISK operation.

Number of Disk Drives

CODOS needs to know how many disk drives are available in the system. In par-

ticular, it needs to know whether there is just one drive or more than one so that
the proper copy routine is used by the FORMAT utility. The OPEN command also needs

to know the number of drives so that it can properly flag as an error any attempt
to open a non-existant disk drive. For specialized applications, you can specify
fewer drives than are actually present. Note however that there is a very substan-
tial advantage in having at least two drives available because copy and backup

operations are much more automatic. CODOS on the Distribution disk is set up for

two disk drives. Up to four drives are permitted.

Number of Disk Buffers

In order to do disk operations, CODOS requires a number of disk buffers. Each

disk buffer is a 256 byte region of memory. These are always embedded in system

memory above $C000 and so do not directly tie up any user memory below $C000.
Every disk drive above two requires a buffer to hold the block allocation map for

that drive. Every fi le that is assigned to a channel also needs a buffer. There

is enough room in system memory for a maximum of 8 disk buffers. The default is 6

buffers. This leaves 2 buffers (512 bytes) unused during normal CODOS operations.
These two buffers are used, however, by certain utility programs such as DISKETTE

and BACKUP. Therefore it is recommended that the default number of buffers be
retained unless you have a specific need for more simultaneously-active files.

Reducing the number of buffers used will increase the amount of memory which is

available for other uses. If fewer than 6 disk buffers are specified, then fewer

files may be simultaneously active. The extra memory freed up by specifying fewer

than 6 buffers may be used for custom I/O device drivers if desired. See Tables
10-1 and 10-2 below for specifics regarding the effect of changing the number of

disk buffers available.

10-2

TABLE 10-1: NUMBER OF SIMULTANEOUSLY ACTIVE FILES

DRIVES NUMBER OF BUFFERS

IN SYSTEM 2 3 4 5 6 1 8

1 2 3 4 5 6 7 8

2 2 3 4 5 6 1 8

3 * 2 3 4 5 6 7

4 * * 2 3 4 5 6

NOTES FOR TABLE 10-1:

1. The values shown are the maximum number of simultaneously active files for

the listed combination of buffer count and disk drive count.

2. An entry of "*" indicates an illegal combination and that more buffers must

be specified.

TABLE 10-2: FREE SYSTEM RAM ADDRESSES

OF DISK ADDITIONAL FREE RAM

BUFFERS AVAILABLE

7 $D300-D3FF

6 $D300-D4FF (Normal configuration)

5 $D300-D5FF

4 $D300-D6FF

3 $D300-D7FF

2 $D300-D7FF, $E000-EOFF

NOTES FOR TABLE 10-2:

1. The DISKETTE and BACKUP utilities use $D300-$D4FF for special buffers.

You should therefore use these utilities with caution if you increase the number of
buffers to greater than 6. In this case you should ensure that you FREE all chan-

nels assigned to files before running the utilities to avoid conflicts.

10-3

Track-to-Track Step Time

The disk controller hardware needs to know how fast the disk drives are able to
respond to track seek step commands. If the disk controller tries to step too

fast, the disk drive will "loose its place" and not position the head over the

correct track. The default value of 8 milliseconds is slow enough to accomodate

all disk drives supplied by MTU. If you have double-sided drives supplied by MTU
or have supplied your own drives with a faster seek time than 8 milliseconds, you

may wish to change the step time. Decreasing the step time will substantially

improve the performance of the system. The optimum settings for drives supplied by

MTU are shown below:

MIU System Number Disk Drive Type Track-to-Track Step Time

MTU-130-1S Single-sided 8
MTU-130-1D Double-sided 3

MTU-130-2S Single-sided 8

MTU-130-2D Double-sided 3

If you have disk drives from another source, you will have to find the rated track-

to-track step time in the drive manual or continue to operate with the default.

Remember that the SYSGENDISK utility requires the step time in hexadecimal soa

step time of 10 milliseconds would be entered as an A.

Head Load Time

The disk controller hardware needs to know how fast the disk drives are able to
press their read/write head against the diskette. If the disk controller tries to

read or write too soon after commanding the head to load, read or write errors are

likely. The default value of 50 milliseconds is slow enough to accomodate all MTU
disk drives but may be slower than is necessary. Longer than necessary head load
time usually has a small impact on system performance except when copying small

records from one drive to another. The table below may be referred to if you have
disk drives supplied by MTU:

MTU System Number Disk Drive Type Head Load Time

MTU-130-15S Single-sided 36 ($24)

MTU-130-1D Double-sided 50 ($32)

MTU-130-2S Single-sided 36 ($24)

MTU-130-2D Double-sided 50 ($32)

If you have disk drives from another source, you will have to find the rated head

load time in the drive manual or continue to operate with the default. DO NOT
experiment to find the fastest allowable head load time since read errors are
hidden by CODOS and write errors may not be noticed until long after they are made.
Remember that the SYSGENDISK utility requires the head load time in hexadecimal so

a value of 30 milliseconds would be entered as 1E.

10-4

RUNNING SYSGENDISK

Any changes you make using SYSGENDISK are made to the copy of the operating

being run » and therefore will not be activated until you reboot the system. The

changes made are permanent (until you rerun SYSGENDISK). Any copies of the system

made using FORMAT after running SYSGENDISK will also have the new attributes. Do

not run SYSGENDISK on the Distribution disk.

The disk in drive 0 must not be write-protected, and the file CODOS.Z must be
unlocked before executing SYSGENDISK. To begin, type the CODOS command:

SYSGENDISK

which initiates the program. The first prompt will be:

THIS UTILITY MODIFIES DISK ATTRIBUTES
FOR CODOS ON DRIVE 0 DISK
DEFAULTS SHOWN IN ().
WANT TO PROCEED (Y¥)?=

If your reply is just a carriage return or starts with "Y", the program will pro-

ceed; otherwise, it terminates. The "Y" displayed in parentheses indicates the

default reply if a carriage return is entered. The disk in drive 0 will be acces-

sed momentarily, and the Utility will display:

OF DRIVES (2)?=

The number in parentheses is the present number of drives known to CODOS. Enter

the number of disk drives in your system, 1 to 4. Double-sided drive counts as one

drive, not two. The next prompting message displayed is:

DISK BUFFERS (6)?=

which requests the number of disk buffers for the system, 2 to 8. Normally you

will simply reply with a carriage return to this prompt.

After specifying the number of disk buffers in the system, the next prompt is:

TRACK STEP RATE ($08 MS)?=

The present setting of the step rate will be shown in parentheses. Entering a

earriage return will keep the present step rate. The value you type must be an

integer between 1 and $F (15 decimal).

HEAD LOAD TIME ($32 MS)?=

The present value is shown in parentheses and is retained if you type a carriage

return. Legal values may range from 2 to $FE milliseconds in 2 millisecond incre-

ments. After you enter your value for head load time, the operating system file

will be updated on disk and the Utility will terminate with the message:

SYSTEM MODIFIED.
CHANGES WILL BE ACTIVATED ON NEXT POWER-UP.
SUGGEST YOU LOCK CODOS.Z

This completes SYSGENDISK. To test the modified system, re-boot CODOS.

10-5

ADDING A PRINTER TO THE MTU-130

The first peripheral device most people add to their MTU-130 computer isa
printer. The MTU-130 can accommodate almost any printer for small computers on the
market today, with the appropriate interface cable. Either parallel (Centronics

interface) or serial (RS-232 interface) printers can be used.

Adding a printer involves three steps:

(1) Make or buy an appropriate interface cable for your printer.

(2) Generate a software printer-driver program to run your printer.

(3) Tell CODOS that you have a printer and where the driver routine is.

To help you with the first step, please refer to tables 10-4 and 10-5 which

specify the cable connection requirements for several popular printers. If your

printer is not among these, you will need to consult the printer manual. If you do

not wish to make your own cable, a local computer store can make one for you.

For many people, the most difficult part of adding a printer is writing the
software "driver" subroutine in machine language. Luckily, the SYSGENPRINTR util-
ity program will normally do all the work for this step for you! This program will
ask you questions about your printer and write an output-only printer driver con-

figured according to your answers. This should be sufficient to handle most of the

general purpose printers available for microcomputers. SYSGENPRINTR is explained

in detail later in this section. In rare instances printers will be too unusual to
handle with SYSGENPRINTR. If your printer requires special control codes or error

handling, the printer driver generated by the SYSGENPRINTR program may not be

sufficient. Guidlines for creating your own printer driver from scratch are inclu-

ded later in this section.

Finally, you will need to permanenetly modify CODOS so that it "knows" that you
have a printer available. To do this, run SYSGENDEVICE, which is another conversa-

tional utility program. SYSGENDEVICE is described in detail later in this section.

Once you have performed these steps, your printer will be immediately available for
use as soon as you power-up your MTU-130.

TABLE 10-3: INTERFACE ATTRIBUTES FOR SELECTED PRINTERS

Parallel Interface Printers

PRINTER STROBE PULSE BUSY SIGNAL NOTES

MX70 N H
MXx80 N H Select PRINT AND LINE FEED on buffer

full.
IDS440 N H

Serial Interface Printers

PRINTER DATA BITS STOP BITS PARITY BAUD RATE NOTES

ANACOM 150 8 2 N 9600 Set 9600 baud rate
Set BUSY = - volts

10-6

PARALLEL SERIAL

Connectors - T&B/ANSLEY 609-36M Conntectors - Type: DB-25P

PIN # SIGNAL NAME PIN # SIGNAL NAME

19 GROUND 1 GROUND
27 DATA 0 (PBO) 2 DATA OUT
9 DATA 1 (PB1) 5 CTS (Clear To Send)

28 DATA 2 (PB2)
10 DATA 3 (PB3)
29 DATA 4 (PB4)
1 DATA 5 (PB5)
30 DATA 6 (PB6)
12 DATA 7 (PB7)
31 BUSY (CB1)
13 STROBE (CB2)

NOTES FOR TABLE 10-X:

1. The parallel connections use CB2 for the strobe signal. It may be neces-

sary to turn off the printer if you want to use the CB2 signal to generate sound,

such as with BASIC's TONE command.

TABLE 10-5: CONNECTIONS FOR PRINTER END OF CABLE FOR SELECTED PRINTERS

PARALLEL SERIAL

EPSON IDS
MX70 44O ANACOM
MX80 150

SIGNAL NAME PIN # PIN # SIGNAL NAME PIN #

GROUND 19 7 GROUND 7
DATA 0 2 14 DATA 3:

DATA 1 3 13 cTs 11

DATA 2 4 12

DATA 3 5: 11
DATA 4 6 10
DATA 5 6 9
DATA 6 8 15
DATA 7 9 =
BUSY 11 19
STROBE 1 3

10-7

RUNNING SYSGENPRINTR

Make sure that you have a non-write-protected disk in drive 0. To run the
SYSGENPRINTR program, enter the CODOS command:

SYSGENPRINTR

The program will inform you of its function and
continue, enter "Y" and then carriage return, or
enter "N" and then carriage return.

ask if you want to continue. To
just carriage return. If not,

The SYSGENPRINTR program will now ask you a series of questions about how to
configure your printer driver, based on the characteristics of your printer. All
responses consist of entering the appropriate key followed by a carriage return.
In cases where a default selection is Supported, you may respond with just a
carriage return. The default selection is indicated by an underline. If none of
the selections are underlined, then a default selection is not allowed. Ifa
response is not valid, the question is repeated until a valid response is obtained.
In the discussions below, the necessity of a carriage return may not be mentioned,
but is always implied.

Question 1 - Do you want your printer driver to perform TAB expansion (Y/N)?

This question should be answered by entering "Y" or "N" to signify yes or no,
respectively. Answering yes means that the hex code $09 (CNTL-I) will be inter-
preted as a tab character. The printer driver will count characters
the last carriage return or form-feed sent. When a TAB character is received,
spaces will be output until the next tab position is reached. The tab positions
are determined by the contents of the Global Tab Table found at $06E0. If beyond
the last tab stop, no spaces are printed.

starting from

Answering no means that the characters will be sent to the printer with no
special handling for tabs.

Question 2 - Do you want your printer driver to insert line feeds after carriage
returns (Y/N)?

Answering yes means that after every carriage return ($0D) sent to the printer, the
printer driver will automatically send a line feed ($0A). This assumes that your
Printer does not automatically line feed when a carriage return is received.
Answering no will configure the printer driver to not send a line feed after a
carriage return.

Question 2 - Does your printer have a parallel or serial interface (P/S)?

This question should be answered by entering "P" or "S" to signify parallel or
serial, respectively. If parallel is selected, a sequence of questions dealing
with the parallel interface will be asked. Skip to Parallel Printer Driver section
for the remaining questions. If serial is selected, a different sequence of
questions will be asked. Skip to Serial Printer Driver section for the remaining
questions.

Parallel Printer Driver

The SYSGENPRINTR program will configure a parallel interface which sends 8 bits
of data. A character will be transferred to the printer with a strobe pulse, to
which the printer should respond by activating a Busy signal. This Busy signal
should remain active until the printer is ready to receive another character.

10-8

You may refer to Table 10-3 to see if your printer is listed. If so, you may

use the answers provided. If not listed, you should refer to your printer manual

to determine the proper answers.

Question 3P - Does your printer require a negative or positive going STROBE pulse

(N/P)?

This question should be answered by entering "P" or "N" to signify positive or
negative, respectively. Answering positive will select a positive STROBE pulse.

This means that the STROBE signal will normally be low, with a positive pulse

occuring when a character is to be transferred to the printer. Answering negative
will select a negative STROBE pulse. In this case the STROBE signal will normally

be high, with a negative pulse occuring when a character is to be transferred.

Answering this question with a carriage return will select the default, which is a

negative STROBE pulse.

Question 4P - Does your printer generate an active high or low BUSY signal (H/L)?

This question should be answered by entering "H" or "L" to signify high or low,

respectively. Answering high will cause the printer driver to look for a high-to-

low transition of the BUSY signal to indicate when the printer is ready to receive

another character. Answering low will cause the printer driver to look for a low-

to-high transition of the BUSY signal to indicate when the printer is ready to

receive another character. Answering with a carriage return will select the

default, which is a high BUSY signal.

This concludes the parallel configuration questions. The configured printer

driver will be written to the file PRINTDRIVER.Z. If the file already exists, you
are given the choice of overwriting the file or aborting the writing of the file.

The SYSGENPRINTR program then returns to CODOS. The file written will have two

parts. The printer driver will occupy the region from $D280 to $D2FF. A second

part, which is an initialization routine, will start at $B400. This initialization

part can be freely overwritten by other programs (such as the utility programs),

because it is executed only once when the driver is initialized.

Serial Printer Driver

The SYSGENPRINTR program will configure a serial interface which transmits the

appropriate number of bits with the desired parity and baud rate. The printer

driver will make use of the 6551 serial interface IC in the MTU-130 to perform the
transmission. -The 6551 IC expects the CTS (Clear to send) signal to go high when
the printer is not ready to receive characters. (IMPORTANT NOTE: If the CTS line

is raised while a character is being transmitted, the remaining untransmitted bits

of the character are forced to ones. This will cause an incorrect character to be
transmitted. The serial printer driver will wait 2 milliseconds after each char-
acter is transmitted to allow time for the printer to raise the CTS signal. If

your printer does not update the CTS signal in this time frame, you will need to

make other arrangements).

You may refer to Table 10-3 to see if your printer is listed. If so, you may

use the answers provided. If not listed, you should refer to your printer manual

to determine the proper answers.

Question 3S - Does your printer require 7 or 8 data bits (7/8)?

10-9

This question should be answered by entering "7" or "8" to signify 7 or 8 data

bits, respectively. If 8 is selected, all 8 bits in each byte are transmitted. If
7 is selected the least significant 7 bits of each byte are transmitted. Answering

with a carriage return will select the default, which is 8 data bits.

Question 4S - Does your printer require 1 or 2 stop bits (1/2)?

This question should be answered by entering "1" or "2" to signify 1 or 2 stop

bits, respectively. Answering with a carriage return will select the default,

which is 1 stop bit.

Question 5S - Does your printer require ODD, EVEN, MARK, SPACE or No parity

(0,E,M,S,N)?

This question should be answered by entering "O", "E", "M", "S", or "N". The

"Oo" and "E" keys selects odd or even parity, respectively. The "M" and "S" keys
select transmission of a mark (1) or space (0) bit, respectively. The "N" key
selects no parity. If you've previously selected 8 data bits and 2 stop bits, you

will be informed that a response other than "N" will reduce the number of stop bits

to 1. Answering with a carriage return will select the default of no parity.

Question 6S. What is the desired baud rate (50,75,110,134, 150,300,600, 1200, 1800,
2400, 3600, 4800, 7200, 9600, 19200)?

This question should be answered with a the desired baud rate. This baud rate
should be one of those listed in parentheses.

This concludes the serial configuration questions. The configured printer

driver will be written to the file PRINTDRIVER.Z. If the file already exists, you
are given the choice of overwriting the file or aborting the writing of the file.

The SYSGENPRINTR program then returns to CODOS. The file written will have two

parts. The printer driver will occupy the region from $D280 to $D2FF. A second

part, which is an initialization routine, will start at $B400. This initialization

part can be freely overwritten by other programs (such as CODOS utility programs),

because it is needed only during initialization.

FINAL STEPS FOR ADDING A PRINTER

To make CODOS aware of the printer device you must run the SYSGENDEVICE utility

as described later in this section. Respond with "1" to the first question to add

a device. Next, you must specify a single character device name. "pr is the

standard name for a printer, but you may respond with any single letter except "C"
or "N". The printer driver doesn't perform any input, so respond with a carriage
return to the prompt for an input driver address. Respond with "D280" as the
output driver address. This completes the configuration of CODOS for a printer

driver. Before using the printer driver, you must first execute the command:

PRINTDRIVER.Z

which loads the printer driver code, and executes the initialization routine. You

will normally want to add this command to the STARTUP.J file. You must execute
this file (not just GET it) to perform the necessary initialization. You should
also note that after pressing RESET on the keyboard, it will be necessary to re-

execute PRINTDRIVER.Z before using the printer, because RESET clears the I-O ports
on the MTU-130. Failure to initialize the printer driver will cause the system to

"hang" or crash when an attempt is made to print.

10-10

WRITING AND ADDING YOUR OWN I/O DRIVERS

This section describes how you can write your own device drivers for additional

printer types not already covered in this section or other output or input devices,

and how to define them to CODOS. Up to six additional device drivers, each poten-

tially capable of input and output, may be added. Except fora little bit of
programming, adding a custom device driver is almost as easy as adding one of the

standard ones described previously.

The following list outlines the steps necessary for interfacing a new device to

CODOS:

1. Decide how the device will interface electrically with the system, i.e.,

parallel port, serial port, custom logic board, etc.

2. Wire the interface cable or build the interface board and test the electrical

interface.

3. Write the driver program according to the guidelines to be described.

4. Decide where the driver program is to reside and then assemble it.

5. Run the SYSGENDEVICE utility to define the device and driver to CODOS.

6. Test the device and its driver interface to CODOS.

7. Modify the STARTUP.J file so that the new driver is automatically loaded when

the system is booted up.

Each of these steps will now be described in detail.

ELECTRICAL INTERFACE

Generally the device itself will dictate the interface method to be used. A

printer with a parallel interface for example would normally be interfaced through

the User parallel port connector on the MTU-130 rear panel. With the parallel

port, it is best to use the "A side" ports first and save the "B side" for later

use. In particular you try to avoid using the CB1 and CB2 signals since some BASIC

programs may use them for generating sounds. It is helpful to scan the Programming

chapter of the Monomeg hardware manual to determine what the exact capabilities of

the built-in parallel and serial I/O ports are.

INTERFACE CABLE

Typically a device interface will use only a portion of the parallel or serial

I/O port signals. Therefore it is wise to construct the interface cable plug that

mates with the MTU-130 so that another cable that connectes to another device and

uses the remaining signals can be attached to the same plug at a later date. It is

sometimes possible to obtain a parallel port mating connector that has both a plug

and a socket together as well as an exit hole for the cable somewhat like a

Christmas tree light set. This would allow two or more interface cable sets to be

"stacked up" and the devices used simultaneously as long as there are no electrical

conflicts among the devices.

10-11

WRITING THE DRIVER PROGRAM

Unlike many operating systems, CODOS makes very few demands on the device

driver routines it interfaces to. A full bi-directional (both input and output)

driver routine may have as many as 3 entry points whereas a simple output-only

routine might have only one entry point.

The initialization entry point is optional. If the device or the driver
routine must be initialized before it can be used for input or output, this entry

point is expected to perform that initialization. The initialization entry point

will be called by CODOS only once at the time the driver routine is loaded into
memory. There are no arguments passed and the state of the registers upon return

is immaterial. Stack usage should be balanced however and an RTS instruction

should be used to return to CODOS when initialization is complete. The initializa-
tion entry point may use any CODOS facilities it desires such as SVCs.

The input byte entry point is present only if the device is capable of an input

function. This entry point is called every time CODOS wishes to read a byte from

the device. The driver is expected to wait until the device has a byte available,
read it, and return it to CODOS in the A register. All 8 bits of the byte are

significant so if the most significant bit needs to be masked off, the driver

should do it. The carry flag should be returned clear unless you wish to signal

end-of-file. Note that inputting a CNTRL-Z character ($1A) does not indicate end-
of file. This allows all 256 possible codes to be input. If your input device is
a character-oriented device, CODOS expects an ASCII CR (Carriage Return) to be used
for end-of-line and for a feed to the next line. If the device uses a different
convention (such as separate carriage return and line feed functions), the input

driver should filter out a line feed immediately following a carriage return. The
X and Y registers need not be saved or restored. Stack usage must be balanced and
an RTS must be used to return to CODOS. The input byte entry point may not use

SVCs. It is recommended that the stack or locations within the driver routine
itself be used for temporary storage.

The output byte entry point is present only if the device is capable of an

output function. This entry point is called every time CODOS wishes to write a

byte to the device. The driver is expected to wait until the device is ready to

accept a byte and then send it the byte CODOS has passed in the A register to the
device. All 8 bits of the byte may be significant so if the device requires the

most significant bit to be zero, the output driver should mask it off. CODOS uses

an ASCII CR character to end a line and automatically feed to the next line. If
the device requires separate LF characters to feed to the next line, the output
driver should insert them after CR characters itself. The A, X, and Y registers
need not be saved or restored. Stack usage must be balanced and an RTS must be

used to return to CODOS. The output byte entry point may not use SVCs. It is
recommended that the stack or locations within the driver routine itself be used
for temporary storage.

The listing on the next page is an example of a simple printer driver. Of

course every printer is different but this should serve to illustrate how a driver

routine is written.

10-12

LISTING 10-1: SAMPLE DEVICE DRIVER

ANACOM PRINTER DRIVER FOR MTU-130 CODOS MTU 6502 ASM 1.0 *UNDATED*

0001 0000 .PAGE 'ANACOM PRINTER DRIVER FOR MTU-130 CODOS'
0002 0000 ;
0003 0000 3 THIS PRINTER DRIVER WORKS FOR THE ANACOM 150 PRINTER, AND MAY WORK
0004 0000 ; FOR OTHER PRINTERS WITH SERIAL INTERFACE AS WELL. TO MODIFY THE
0005 0000 ; BAUD RATE AND OTHER TRANSMISSION PARAMETERS, SEE THE 6551 DATA SHEET
0006 0000 3 AND PRINTER OWNERS MANUAL AND MODIFY THE BYTES SET BY "INITPR"
0007 0000 ; APPROPRIATELY. THIS VERSION USES 9600 BAUD WITH NO PARITY.
0008 0000 ; TO INITIALIZE, EXECUTE ENTRY POINT INITPR. TO OUTPUT CHARACTER,
0009 0000 ; USE ENTRY POINT OUTPR WITH DESIRED CHARACTER IN A. OUTPR RESTORES
0010 0000 ; A, X, AND Y REGISTERS; INITPR RESTORES X AND Y. NOTE THAT ANACOM
0011 0000 3 REQUIRES A LF INSTEAD OF A CR FOR A NEW LINE; THIS WILL NOT BE TRUE
0012 0000 ; FOR MOST OTHER PRINTERS. THE DRIVER MUST BE RE-INITIALIZE AFTER ANY
0013 0000 ; RESET OF THE SYSTEM.
0014 0000 ;
0015 D280 = CODORG = $D280 ;STARTING LOCATION FOR ROUTINE
0016 0000 ;
0017 0000 ; 6551 CHIP EQUATES...
0018 0000 ;
0019 BFC8 DR = $BFC8 6551 TRANSMIT/RECEIVE DATA REGISTER
0020 BFC9 SR = DR+1 ;RESET/STATUS REGISTER
0021 BFCA COMR == SR+1 COMMAND REGISTER
0022 BFCB = CTRR = COMR+1 CONTROL REGISTER
0023 0000 3
0024 0000 #s CODORG ENTRY POINT FOR NORMAL CHARACTER OUTPUT...
0025 D280 ;
0026 D280 48 OUTPR PHA ;SAVE CHARACTER TO PRINT
0027 D281 ADC9BF OUTPR1 LDA SR ;EXAMINE STATUS REGISTER
0028 D284 2910 AND #$10 | ;ISOLATE "TRANSMITTER READY" BIT
0029 D286 FOF9 BEQ OUTPR1 ;WAIT TILL ITS READY
0030 D288 68 PLA ;THEN RECALL CHARACTER
0031 D289 C90D cMP #$0D 31S IT A CARRIAGE RETURN?
0032 D28B FOO4 BEQ OUTPR4 ;IF SO BRANCH
0033 D28D 8DC8BF STA DR ;ELSE OUTPUT TO TRANSMITTER
0034 D290 60 RTS }RETURN TO CALLER
0035 D291 ;
0036 D291 A9OA OUTPR4Y LDA #$0A ;REPLACE CR WITH ASCII LF
0037 D293 SDC8BF STA DR ;OUTPUT TO TRANSMITTER
0038 D296 A90D LDA #$0D ;RESTORE REG
0039 D298 60 RTS ;RETURN TO CALLER
0040 D299 ‘
0041 D299 3 ***COME HERE TO INITIALIZE WHEN DRIVER IS LOADED...#*##
0042 D299 ;
0043 D299 ENTRY
0044 D299 8DC9BF INITPR STA SR ;STORE ANYTHING TO RESET CHIP
0045 D29C A9OB LDA #$0B ;NO PARITY, NO ECHO, RTS ON, NO INTERRUPT,
0046 D29E SDCABF STA COMR RTS ON.
0047 D2A1 AQIE LDA 4#$1E ;8 DATA BITS, 1 STOP BIT, 9600 BAUD.
0048 D2A3 8DCBBF STA CTRR
0049 D2A6 60 RTS ;RETURN TO CALLER
0050 D2A7 :
0051 D2A7 END

0 ERRORS IN PASS 2

10-13

WHERE TO PUT THE DRIVER

Generally I/O drivers are expected to remain in memory ready for use regardless

of what programs may have been run since CODOS was last booted up. To meet this
goal it is necessary to store the driver in an area of memory away from the user

area that extends from $0700 through BFFF. CODOS has a 128 byte area from $D280
through $D2FF reserved for this purpose. This 128 bytes is generally enough to
hold a printer driver and is often adequate for two or three simple drivers.

Another area that may be used, particularly on systems with only two disk

drives, is one or more of the disk buffers. On dual drive systems you can use the

512 bytes from $D300-D4FF and still have enough buffers for 6 simultaneously active
files. However, certain utilities such as DISKETTE and BACKUP also use this area,
so you will need to reload your driver routines after running such utilities.

Device drivers are expected to reside in memory bank 0.

SYSGENDEVICE UTILITY

This utility program is used to interface your device driver program to CODOS.

The utility will first ask you what single letter name you wish to associate with

the device. "P" for printer is obvious but any letter that is not already used is

acceptable. Please note that "C" and "N" have already been assigned to the console
and null device respectively. It will next ask you what the entry point address

for input is. If your driver can do input, enter the hex address of the input

entry point. If it cannot, reply with a carriage return to prevent CODOS from ever

trying to input from this device. Finally it will ask the entry point address for

output. If your driver can do output, enter the address of the output entry point;

otherwise just enter a carriage return. Remember that SYSGENDEVICE only modifies
CODOS on the disk in drive 0, it does not affect the copy currently in memory. You
will have to re-boot to get the modified version of CODOS in memory before you can
test the driver with CODOS. SYSGENDISK is described in more detail later in this
secion.

The initialization entry point should be the entry point address specified when
the driver program object code is saved on disk. Then if initialization is neces-

sary, the driver is loaded and initialized simply by giving its name, either from
the keyboard or a job file. If there is no initialization entry point, then the
GET command would be used to load the driver.

TESTING

After CODOS is modified with SYSGENDEVICE and the driver itself is loaded into

memory (and initialized if necessary), it is ready to be tested. For an output
device like a printer, you can do this simply by entering the command: TYPE C P

(assuming the device name was "P"). This "connects" the keyboard to the device and
every line you type will be sent to the device when you hit carriage return. The
connection is broken by typing a entl/Z. For an input device, you could enter:

TYPE T C (assuming the device name was "T") and input from the device will appear
on the console display line-by-line. Receipt of an ASCII SUB (cntl/Z or $1A) or
pressing the INT key will restore normal console operation. Of course these

suggestions only apply to text-oriented devices that use the ASCII character code.

Other device types will have to be tested with a program.

10-14

LOADING WITH THE STARTUP.J FILE

After the new device and driver is throrughly tested, you will probably want
the driver to be automatically loaded whenever the system is turned on so that the

device will be ready for use. This is accomplished by adding a line to the

STARTUP.J file that loads the driver into memory and runs it if initialization is
necessary. Please refer to the STARTUP.J section of this chapter for further

information on this procedure.

INTERRUPT DRIVEN 1/0

-You may use interrupt-driven devices if desired. In this case, the device's
interrupt service routine should input or output bytes into a local buffer. The

Device-In or Device-Out driver should transfer one byte between the accumulator and

this buffer during each call from CODOS.

10-15

RUNNING SYSGENDEVICE

To ammend CODOS for new devices, first make sure you have a non-write protected
disk in drive 0 with CODOS.Z unlocked. Then execute the CODOS command:

SYSGENDEVICE

which starts the interactive program for changing the names and characteristics of

I-O0 devices on your system. Once these modifications are made, you will be able to

assign a CODOS channel to the device and perform input-output. The modifications
which you make bécome permanent (until you run SYSGENDEVICE again), and any copies
of the modified system made using the FORMAT utility will also possess the modified

I-O device attributes. Table 10-7 lists requirements for device-driver subroutines
under CODOS. Once you have written or obtained the necessary device-driver subrou-

tine, you can add your new device to CODOS' device table by executing SYSGENDEVICE.

The Utility prompts:

THIS UTILITY PERMANENTLY MODIFIES THE

DEVICE DRIVER TABLE IN CODOS ON DRIVE 0.
DO YOU WANT TO:

(0) QUIT,
(1) ADD A DEVICE, or
(2) DELETE A DEVICE, OR,

?=

Enter the appropriate number, 0 to 2, and a carriage return. For example, assuming

that you wished to add a line printer device, you would enter "P" for the line

printer name. The Utility will respond with:

INPUT DRIVER ADDR. (CR=NONE)?=

If your device does not have an input capability (for example, a line printer),

respond with a carriage return. Otherwise, enter the address of the

machine-language driver subroutine for inputting a character from your new
device. See note 3 below. The next prompt is:

OUTPUT DRIVER ADDR. (CR=NONE)?=

In a like manner, enter the address of the character-output driver routine. The

output driver address for the standard printer driver generated by SYSGENPRINTR is

$D280. You will enter:

D280

The program will terminate with the message:

MODIFICATION COMPLETE.
SUGGEST YOU LOCK CODOS.Z

This completes the procedure. The new device will be available to your system as

soon as you re-boot CODOS.

Deleting an existing device is accompished in a similar manner by responding with a

"2" to the initial SYSGENDEVICE prompt and then indicating the device to delete.

10-16

NOTES:

Ls The file CODOS.Z must be unlocked prior to executing SYSGENDEVICE or no

changes will be made and an error message will be issued.

2. The modifications made to the system are made on the disk copy of the

system in drive 0; therefore, the changes will not become effective until the

system is booted up.

3. The requirements for device drivers are summarized in Table 10-7.

4. To modify an existing device, first delete it and then rerun SYSGENDEVICE

to add the same device.

5. You may not delete the Console or Null devices.

6. Naturally, the SYSGENDEVICE Utiltiy does not automatically save your device

driver(s) on disk; it is your reponsibility to see that they are loaded into memory

before being executed. This can be done automatically during booting-up, if
desired, as explained elsewhere in this section.

7. You may add up to 6 custom devices besides the null device and Console.

8. When answering questions which have a "no change" option for a reply,

remember that the "present" status of the system is the status of the system on
disk 0, not the present memory-resident CODOS image.

TABLE 10-7: CONSOLE AND DEVICE DRIVER REQUIREMENTS

Driver

Subroutine Function and Requirements

Device-In Input byte from device. This routine must return the byte of data

from the device in the A register. It does not have to restore X or

Y before returning. The Carry should be cleared. See note 1 below.

Device-Out Output byte to device. This routine should output the contents of

the accumulator to the device. It does not have to restore the X or
Y registers before returning. See note 4 below.

NOTES FOR TABLE 10-7.

1. CODOS can input or output all 256 possible byte codes to devices. If an input

device returns the carry set, however, the system will interpret it as an end-of-

file indication.

2. I-O drivers may not use SVC's and should return in non-decimal mode.

3. You may use interrupt-driven devices if desired. In this case, the device's

interrupt-service routine should input or output bytes into a local buffer. The

Device-In or Device-Out driver should transfer one byte between the accumulator and

this buffer during each call from CODOS.

4, The line terminator is a CR character. If your device needs a LF, your driver

should add it.

USING THE STARTUP.J FILE

Using the STARTUP.J file is perhaps the most flexible and powerful method of

system modification. Since the STARTUP.J file can contain any list of commands

(built-in or user-defined), you can include SET commands to automatically "patch"

the parameter area or operating system image in memory after it is loaded. The 1/0

driver parameters you would most likely want to change are described later in this

section. CODOS parameters are described in Appendix E.

Since the STARTUP.J file is nothing more than a file of ASCII text, you can

write your own STARTUP.J file by simply using the TYPE command the text editors.

To be on the safe side, we suggest you create your new command file under another

name, and then, when you are sure its correct, DELETE the old STARTUP.J and RENAME

your new file as STARTUP.J. Generally speaking, you can design your own STARTUP.J

file as you please, but you should keep in mind the notes listed below when doing

so. Never modify the STARTUP.J file on the Distribution disk.

NOTES:

1. Keep in mind that only CODOS itself is automatically loaded by the boot-

strap loader PROM. All other programs and subroutines needed for system operation

(such as the keyboard and text display I/O drivers) must be loaded by commands in

the STARTUP.J file.

2. You can't do any input or output to a device until its driver subroutines

are loaded (or executed if initialization is needed).

3. Any error detected by the system causes CODOS to stop reading the STARTUP.J

file and to try to issue an error message. Thereafter it will try to read from the

Console. It is normally a good idea to laod and initialize your Console device

drivers (by executing IODRIVER.Z) as soon as possible in the STARTUP.J sequence, so

that if you have a mistake in the STARTUP.J file or other problem, you will be able

to see the error message.

4. The STARTUP.J file must GET SVCPROC.Z if you plan to use SVCs. Almost all

Utility programs including the Editor require the SVC processor.

5. The STARTUP.J file must GET GRAPHDRIVER.Z if you plan to use graphics. All

of the Graphics Libraries for BASIC except KGL assume that this file has been

loaded into memory. The Editor also requires GRAPHDRIVER.Z.

6. You cannot LOAD or SET into reserved memory unless you UNPROTECT first.

7. It is a good practice to re-PROTECT the system after you are done with any

modifications.

8. Do not change the STARTUP.J file on the Distribution disk provided by MTU.

10-18

SAMPLE STARTUP.J #1:

Below is a listing of the standard STARTUP.J file supplied on the Distribuiton
disk:

;This is the default STARTUP.J file for MTU-130 CODOS 2.0...
IODRIVER.Z ;Load & initialize Console I-0O drivers.
GET SVCPROC.Z ;Load SVC Processor.
GET GRAPHDRIVER.Z ;Get Graphics Drivers (Needed by EDIT).
DATE ;Prompt for entry of date.

The IODRIVER.Z file is loaded and run in the second line to insure that the console
I/O devices are initialized prior to being used. The SVC processor and graphics
subroutines don't require initialization so they are just loaded by the next two
lines. The last line executes the CODOS DATE command. Since it is the last line
in the job file, CODOS will read commands from the console keyboard after the date
is entered.

SAMPLE STARTUP.J #2:

This is similar to the standard startup file except that the user prefers somewhat
different parameter values for the keyboard. He has also connected a printer to
the system and wishes to automatically start executing an assembly language
application program after the date is entered.

IODRIVER.Z ;LOAD AND INITIALIZE CONSOLE I-O DRIVERS
GET SVCPROC.Z ;LOAD SVC PROCESSOR
GET GRAPHDRIVER.Z ;LOAD GRAPHICS DISPLAY ROUTINES
PRINTDRIVER.Z ;LOAD AND INITIALIZE MY PRINTER DRIVER
SET 221 .150 ;WANT ABOUT 25CPS KEYBOARD REPEAT RATE
SET 213 80 ;I LIKE SILENT KEYBOARDS
DATE
BASIC
RUN STOCKANAL ;RUN MY PORTFOLIO ANALYSIS PROGRAM

The first three lines are the same as example 1. The fourth line loads and
initializes a driver program for a printer that has been added to the system. The
next 2 lines redefine some of the keyboard and sound Parameters of the system. The
parameter addresses and their effects may be found in the next section or in
Chapter 8. The last lines will cause the BASIC program called STOCKANAL to be
loaded and executed automatically.

SAMPLE STARTUP.J #3:

This might be the STARTUP.J file that goes with an integrated laboratory data
aquisition and analysis software package. The startup file defines the function
keys such that pressing one will run a corresponding program from the package.

IODRIVER.Z ;LOAD AND INITIALIZE CONSOLE I-O DRIVERS
GET SVCPROC.Z ;LOAD SVC PROCESSOR
GET GRAPHDRIVER.Z ;LOAD GRAPHICS DISPLAY ROUTINES
DATE ;ASK FOR DATE

ONKEY 1 ‘NMR READ' 'NMR READ’ ;Program to operate our NMR instrument.
ONKEY 2 'GC READ’ 'GC_READPROG' ;Program to operate our gas chromatagraph.
ONKEY 3 'INTEGRAT' 'PEAKINTGRATE' ;Program to estimate fraction quantity.
ONKEY 4 'VIB ANAL' 'DO VIBRATEANAL.J' ;Link to vibration analysis.
ONKEY 5 ' BASIC' 'MTUBASIC' Allow general purpose computer use too.

10-19

The first 4 lines are the same as the standard startup file in example 1. The next
3 lines set up function keys 1, 2, and 3 to load and execute an assembly language

program when they are pressed. The definition of function key 4 illustrates some
of the power of function keys and job files. Pressing key 4 will cause a job file
called VIBRATEANAL.J to be executed. This job file could in turn redefine the

function keys for various component programs of a vibration analysis package. The

last line sets up key 5 to simply put the user in the BASIC interpreter for general

purpose computing.

I/O DRIVER PARAMETERS

The system parameter area in low memory ($0200-027F) contains a number of
parameters that affect the "feel" of the console to a great extent. Default values
of these parameters have been selected that hopefully will satisfy most users. If
you wish to change any of these parameters, refer to the guidelines below for help

in determining their values. It is most convenient to include SET commands to set

the parameters in the STARTUP.J file but you may also enter SET commands through

the console any time CODOS is in control. Programs can also change the parameters

while they run. Only the most commonly altered parameters are explained here, a

complete list may be found in Chapter 8.

PARAMETER: RPTRAT - Keyboard repeat rate.

ADDRESS: $221

DEFAULT VALUE: $C3 (195)

DESCRIPTION: This parameter determines how fast the keyboard repeats. The default
value of $C3 gives a rate of approximately 20 characters per second. To make the
rate slower, increase the value up to a maximum of $FF. To make it faster, de-

erease the value. The parameter is actually the repeat period (time between re-
peats or 1/rate) in units of .000256 second. Remember that the repeat rate will
slow down if character processing takes longer than the repeat period.

PARAMETER: CURDLA - Cursor flash rate.

ADDRESS: $222

DEFAULT VALUE: $06

DESCRIPTION: This parameter determines how fast the cursor flashes while waiting

for keyboard input. To make the rate slower, increase the value. To make it
faster, decrease the value. To eliminate the cursor altogether, set it to zero.
Note that the cursor stays on when it is moving so slower flash rates will not

materially affect the cursor's maneuverability.

10-20

PARAMETER: NOCLIK - Presence of audible key click.

ADDRESS: $213

DEFAULT VALUE: $00

DESCRIPTION: This parameter determines whether the keyboard will click when keys

are pressed. It is normally zero which allows clicks. If it is set to $80, then
clicks will be suppressed and permit silent keyboard operation.

PARAMETER: CLKVOL - Volume of audible key click.

ADDRESS: $225

DEFAULT .VALUE: $20

DESCRIPTION: This parameter determines how loudly the keyboard will click (provided

clicking is enabled). To make it louder, increase the value up to a maximum of

$7F. To make it softer, decrease the value. The waveform period (CLKPER) and

duration (CLKCY) will also affect the apparent loudness to some extent.

PARAMETER: CLKPER - Pitch of audible key click.

ADDRESS: $224

DEFAULT VALUE: $05

DESCRIPTION: This parameter determines the pitch of the keyboard click. To

inerease the pitch, reduce the value. To decrease the pitch, increase the value.

Note that a value of 0 is interpreted as 256. The actual tone frequency in Hertz

is 5000/N where N is the parameter value. When using the higher pitches, you may

wish to increase the duration (CLKCY) or volume (CLKVOL) to retain good audibility.

PARAMETER: CLKCY - Duration of audible key click.

ADDRESS: $226

DEFAULT VALUE: $02

DESCRIPTION: This parameter determines the duration of the keyboard click. To

inerease the duration, increase the value up to a maximum of $7F. To reduce the

duration, reduce its value. The number of waveform cycles produced is one plus the

duration parameter value. Note that the time required to produce the click tone is

added to the character processing time so if the duration is excessive, keyboard

response will seem sluggish.

PARAMETER: BELVOL - Volume of audible bell tone.

ADDRESS: $228

DEFAULT VALUE: $40

DESCRIPTION: See the CLKVOL parameter description for details.

10-21

PARAMETER: BELPER - Pitch of audible bell tone.

ADDRESS: $227

DEFAULT VALUE: $05

DESCRIPTION: See the CLKPER parameter description for details.

PARAMETER: BELCY - Duration of audible key click.

ADDRESS: $229

DEFAULT VALUE: $0C

DESCRIPTION: See the CLKCY parameter description for details.

PARAMETER: TABTBL - Tab stop table.

ADDRESS: $6E0-6FF

DEFAULT VALUE: $09, $11, $19, $21, $29, $31, $39, $41, $49, $00,

DESCRIPTION: This parameter is actually a list of up to 32 tab stops. The values

stored actually represent the column number that a tab stop is located on. The

first zero value marks the end of the table. The values must be stored in ascend-
ing sequence. Remember that the leftmost character position is column one, not
zero.

10-22

CODOS

APPENDIX A
CODOS ERROR MESSAGES

Error # Error Message

AAU AWPOMIAU EWN

Command not found.
File not found.
Drive needed is not open.

Syntax error in command argument.

Missing or illegal disk drive number.

Drive needed is not ready.

Locked file violation.
Missing or illegal channel number.

Channel needed is not assigned.
Diskette is write-protected.
Missing or illegal device or file name.
Missing or illegal file name.
Not a loadable ("SAVEd") file.

<from> address missing or illegal.
<to> address missing or illegal.

<from> address greater than to address.
Reserved or protected memory violation.

<value> out of range (greater than $FF or less than 0).
Arithmetic overflow.
<entry> address missing or illegal.
New file on write-protected diskette.
Illegal or unimplemented SVC number.
Memory verify failure during SET or FILL.

<value) missing or illegal.
New file name is already on selected diskette.

Missing or illegal character string delimiter (' , ").
<destinatiom address missing or illegal.

Missing or illegal register name.
All buffers in use (free a chan. assigned to a file).
Unformatted disk or irrecoverable read/write error.

Breakpoint table full (3 BP's already set).

Write-protected disk or formatting error.

Input from output-only device, or visa-versa.

Not enough channels are free for specified function.

No CODOS on drive 0, or system overlay load error.

Illegal entry into CODOS system.

Required software package not loaded in memory.
Diskette is full; all blocks already allocated.

Diskette is full; no room left in directory.
Unformatted diskette or drive went not-ready.

Unformatted diskette or irrecoverable seek error.
Unformatted diskette or hardware drive fault.
System crash: illegal system overlay number.
System crash: illegal sector on disk.
System crash: directory/file table check error.

System crash: file ordinal check error.

System crash: illegal track on disk.
System crash: NEC 765 chip command phase error.
System crash: NEC 765 chip result phase error.

System crash: Directory redundancy check failed.
Missing or illegal memory bank number.
Missing or illegal function key number.

A-1

CODOS ERROR PROCESSING

When an error is detected by CODOS, the program being executed is aborted and

an error number is displayed on channel 2 (the Console). If the error occurred in
a built-in command, CODOS will display the erroneous command and an "up arrow"
character pointing to the next character of the command which CODOS was going to

examine. Note that this is not necessarily the location of the error! The error
could be anywhere before the up-arrow. If the error occurred during a user-pro-
gram the registers will be displayed in the state they were in when the offending

SVC was issued. If the error occurred during a CODOS Utiltiy, the registers show

the location where the error was detected in the Utility.

CODOS will issue an English error message detailing the problem if it can.

These error messages reside on the text file SYSERRMSG.Z. Therefore if the system
can't read this file from drive 0 it won't issue the message. Keeping the error

messages on disk greatly reduces the amount of memory required for the operating

system.

Provision has been made for user-defined error recovery in lieu of the default
error recovery by CODOS. This capability is provdied by SVC number 25 and is

described in Chapter 6.

APPENDIX B

CODOS FILE FORMATS

From the programmer's viewpoint, a CODOS file is simply an array of bytes with
a pointer to the current file position. Reads and writes always take place

starting at the current file position and advance the file position pointer by the

number of bytes read or written. The size of the file can be freely increased or

decreased at any time. Any write-operation which crosses the current end-of-file

will automatically increase the size of the file. A file can be truncated so as to
make the present file position end-of-file. The file can be repositioned at will

(but not beyond the present end-of-file) by using SVC #19. This structure is

called a byte-addressable file and is the most versatile file organization
available on a computer.

There are no reserved "codes" for end-of-file, end-of-line, etc. You may

freely write and read all 256 possible bytes at any position in the file. This

lets you decide the file organization that makes sense for your application, rather

than letting the operating system dictate restrictions that make life simple for

Tt. CODOS keeps track of the present End-of-File by an internally-maintained

pointer. You can always determine the present End-of-File position from within a

program by positioning the file to End-of-File and executing SVC #20 to read the

file position.

Normal CODOS text files consist of variable-length lines terminated by an ASCIT
CR (carriage return = $0D).

Loadable files (such as are generated by the SAVE command) have the following

format:

Size Description

1 byte $58 = ASCII "X" = CODOS loadable file header byte.

1 byte Overlay number, normally $00 (can be defined by assembler .OVL pseudo-op) .

1 byte Memory bank number, either 0, 1, 2, or 3.

1 byte $00 = Reserved for future; always $00.
2 bytes entry address. Entry point into module. If not applicable, set to same

as from address, below.

2 bytes from address. Starting load address for block in memory.

2 bytes Size (not final address!) of memory block to be loaded.
n bytes Actual memory image to be loaded.

If multiple blocks are stored on the file, the above format is merely repeated as
many times as necessary. The GET command continues loading until End-of-File is

encountered or until a non-0 overlay number is encountered in the header. A

special overlay loader would presumably process blocks with non-zero overlay num-

bers.

EXAMPLE:

The standard CODOS Utility COPYF loads into $B400 though $B698 of bank 0 with

an entry point at $B400. The first few bytes of the file are (in hex):

58 00 00 00 00 B4 00 BY 99 02 AQ 01 BD...

where the last three bytes (A9 01 8D) are the first three bytes of the actual
program.

APPENDIX C

BOOTSTRAP LOADER OPERATION

The CODOS system is loaded into RAM by the 256-byte bipolar PROM on the Floppy

Disk Controller Board. This PROM occupies addresses $FFOO-$FFFF in bank 0. This
means that the Reset, Maskable interrupt (IRQ) and non-maskable (NMI) vectors are
also located in this PROM. The Reset vector points to the beginning of the PROM
($FFOO), the IRQ vector points to location $02FD, and NMI points to location $02FA.
The PROM operates as follows:

1. Clear decimal mode, define stack pointer = $FF.
Test the keyboard "MOD" key and jump to $0300 if not down, otherwise

continue.
3. Copy disk controller command strings from PROM into memory from $00C3

through $00D6.
4. Read track 0, sector 0 of drive 0 into locations $FE0O0 through $FEFF.
5. Determine loading information for the actual program to be loaded by

examining the following addresses:

FE3C = FINALS = Final sector number for the load.
FE3D = DMAPG = DMA Address code for loading of the first sector.

FE3E, FE3F = ENTRY = Address-1 of entry point into program.
6. Load sectors 1 through FINALS from track 0 into memory starting at the

address corresponding to the DMA code DMAPG. See note 3 below.

7. Jump to address ENTRY+1.

Users with the necessary technical expertise may wish to use this information

to boot programs other than CODOS.

EXAMPLE:

The Standard MTU-130 CODOS program is supplied on the distribution disk ready

for execution by the bootstrap loader. The memory image to be loaded is stored on

sectors 1 though 25 (sectors are numbered starting with 0) on track 0. Track 0

sector 0 does not contain any useful information except for the following bytes:

$3C = $19 = Final sector to be loaded into memory from track 0.
$3D = $98 = DMA address code for $2600.
$3E = $FF = Low address byte of entry point-1 ($E600).
$3F = $E5 = High address byte of entry point-1.

NOTES:

1. The bootstrap loader uses page 0 as follows:

$00C3-$00D6 = NEC-765 Command Strings.
$00D7-$00DF = Scratch RAM, Result phase readouts from NEC~765.

2. Except for the four bytes described in step 7 above, the Bootstrap loader

does not use the information in track 0 sector 0 in any way.

3. The DMA code is the byte which is sent to the DMA address register, as

discussed in the Disk Ccontroller Hardware manual. It identifies which 64-byte
boundary in the disk controller RAM is to be used as the starting address for the

transfer.

4. The Bootstrap PROM assumes the disk is formatted for double density opera-

tion on drive 0 with 256-byte sectors, 26 sectors per track.

c-1

5. If the Bootstrap Loader detects a disk error, it moves 5 bytes (an $AA,
followed by the 4 disk controller status registers) to the beginning of display
memory and then retries the disk operation. It will do this indefinitely until the

disk operation is successful or Reset is hit.

6. The keyboard MOD key is used to distinguish between a cold Reset (key down)
and a warm reset (key up). The warm Reset is intended to re-enter CODOS through a
vector at $0300 without re-booting CODOS. A time-delay circuit effectively "pres-

ses" the MOD key on power-up to trigger a cold Reset.

APPENDIX D

SAMPLE APPLICATION PROGRAM

HIGH-SPEED, INTERRUPT-DRIVEN, DIRECT-TO-DISK DATA AQUISITION USING CODOS

Two features unique to CODOS are its high speed operation and its interrupt-

ability. Listing D-1 is a complete application program which illustrates the use

of SVCs for high-speed, interrupt-driven data aquisition using a parallel port.

The program is assembled for the MTU-130 computer using the User 6522 VIA device,
but can easily be modified. The program itself is on the CODOS Distribution disk

with the filename DAQDEMO.C. In an actual application, the interrupts would
probably be generated by the input device itself (such as an A-D converter), but
for purposes of illustration, the 6522's internal timer is used to generate inter-

rupts at precisely timed intervals. This interval can be easily modified by chang-

ing the value of the constant DELAY at the end of the program. When the program

starts, it inputs a value every 250 microseconds (using the value of DELAY given)

and stores it on the disk, until 50,000 bytes have been read (12.5 seconds elapsed

time). The values are read from the 6522 A port, which is assumed to be connected

to the device of interest.

The most important point illustrated by this program is that no data is lost

while the operating system is writing to disk, because CODOS can be interrupted at

any time without harm. It also illustrates that a large volume of data can be

written to disk in a short time.

Before using the program, you will need to prepare a new disk formatted with a

"data-aquisition skew", by typing:

FORMAT S

and proceeding with the FORMAT Utiltiy in the usual manner. The "S" argument tells

the operating system to arrange the sectors slightly differently from normal. This

has no effect on normal operation of the disk. The reason for this operation is

explained in note 1, below. Once you have FORMATted the disk and copied any

desired programs onto it, ASSIGN channel 6 to the file you wish save the data on.

Then execute the program. It will take about 12.5 seconds to complete, using the

DELAY and NSAMP (number of samples) values given.

The program itself is composed of two separate parts: a main program, and an
interrupt service routine. The interrupt service routine collects the data samples

into two buffers by filling first one and then the other. As each buffer becomes

full, the service routine sets a "Buffer Full" flag. The main program performs
some initialization, and then waits for a "Buffer Full" condition. As soon as a

buffer becomes full, the main program writes the entire buffer to channel 6 (the

disk file) as one CODOS record. While the "full" buffer is being written to disk,

the interrupt service routine is busy filling up the other buffer, one byte at a

time. When the main program is done writing the first buffer to disk, it clears

the "Buffer Full" flag and waits for the service routine to set the "Buffer Full"

flag for the other buffer. This operation is called double-buffering. The flags

used for handshaking between the service routine and main program are called

semaphores, beause they tell when the program can "proceed". If the service

routine discovers that one buffer has become full before the other buffer has been
emptied by the main program, it aborts the program with a "BUFFER OVERRUN" message.

This condition occurs when you decrease DELAY to the point where the service

routine is stealing such a high percentage of the machine cycles that the main
program and CODOS can no longer complete all the operations needed to perform the

disk write in the time it takes to fill a buffer. Another flag called "DONE" is
set when the desired number of samples have been placed in the buffer. This flag

tells the main program to "flush" the final, partially-filled buffer to disk,
disable the timer interrupts, and free channel 6. Without this flag, the last

partial buffer-full of data would never be transferred from the buffer to disk.

When studying the program, you will notice that the buffers used were quite

large (8K bytes each). This is highly desirable when high-speed disk operations

are desired. CODOS can usually write one record of 8K bytes considerably faster
than it can write, say, 8 records of 1K bytes each. This is because each time you

use an SVC to write a record, CODOS has to perform a considerable amount of "over-

head", such as processing your SVC number, checking to see if the channel specified

is legal and assigned, etc. This overhead may take enough time that the desired
sector has already passed under the write-head on the disk, thus requiring another

full one-sixth of a second for a complete disk revolution.

NOTES:

1. The CODOS system is carefully optimized to give fast loading of programs.

The FORMAT Utility program numbers the sectors on the disk such that sectors that
are numbered sequentially are physically located on alternating sectors on the

disk, as shown below:

#0 #13 #1 #14 #2 #15 #3 #16 see #12 #25

The numbering of sectors in this fashion is called an "interleave" of 2. When

cCODOS is transferring large blocks of information to or from disk starting at

sector 0, it sets up for the next DMA transfer of sector 1 while sector 13 is

passing under the head. If sector 1 was physically adjacent to sector 0, sector 1

would already be under the head before the system was ready to actually perform the
transfer. This would mean that the disk could only access one sector per revolu-

tion instead of 13 sectors per revolution (for 26 sectors per track). Most of the
time spent by CODOS is used to move data from the user's record to the system

buffer in the onboard DMA memory. Moving 256 bytes to or from the user's record to

the system buffer actually takes up virtually all the time available between the
end of the transfer of sector 0 and the beginning of the transfer for sector 1,
even with an interleave of 2. If interrupts occur during this time, the interrupt
service routine may easily steal enough time so that CODOS can't complete the
transfer in the time available. In this case, what is needed is an increased
interleave, so that two sectors intervene between sectors 0 and 1 on the disk

instead of 1. Then the timing requirements are relaxed and a large percent of the
time available can be spent in the interrupt service routine. Specifying the "S"

argument on the FORMAT command generates a disk with an interleave of 3 instead of

2. This will not impair operation of the system on that disk in any way; the

software and hardware do not care about the physical location of the sectors on the

track. The disk controller simply keeps searching till it finds the desired sector
number. The only consequence to normal operations is that program loading will be
somewhat slower. This difference will normally be imperceptible except for very
large programs. The "S" option will permit a large number of interrupts to be made

during disk accesses without a substantial performance degredation in thoughput.

The interleave can only be changed at the time the disk is formatted.

2s Note that the sample program uses the 6522 timer in the free-running,

interrupt mode. If the program does not complete properly for any reason, the

timer may continue to interrupt. You may need to RESET to clear this condition.

35: Sample rates up to 7KHz have been obtained using this program. However,
for rates above 4KHz, you should use a freshly formatted disk or one from which no
files have been deleted since it was last formatted.

4. Refer to section 5.6 in the Monomeg Single Board Computer Hardware Manual

for additional information on programming the 6522 I/O interface chip and alternate

methods of controlling the sample rate and connecting to the data source.

LISTING OF DATA AQUISITION DEMONSTRATION PROGRAM

DOCUMENTATION MTU 6502 ASSEMBLER 1.0

0002 0000 -PAGE ‘DOCUMENTATION!
0003 0000 ; CODOS DEMONSTRATION PROGRAM. 12/31/80 B. CARBREY
0004 0000 ; 8/29/81 REVISED H. CHAMBERLIN
0005 0000 ;
0006 0000 ; HIGH SPEED, INTERRUPT-DRIVEN, DIRECT-TO-DISK DATA AQUISITION
0007 0000 ;
0008 0000 ; THIS PROGRAM USES A DOUBLE-BUFFERED, INTERRUPT SERVICE ROUTINE
0009 0000 ; TO COLLECT DATA FROM PARALLEL PORT A OF A 6522 VIA AND STORE
0010 0000 ; IT ON A CODOS DISK FILE. THE 6522 TIMER IS USED TO SAMPLE THE
0011 0000 ; PORT AT USER-DEFINED INTERVALS AND STORE THE DATA READ ON DISK.
0012 0000 ; THE SAMPLING RATE FOR THE PORT CAN BE MODIFIED BY CHANGING THE
0013 0000 ; CONSTANT "DELAY" (APPROX. TIME BETWEEN SAMPLES IN MICROSECONDS)
0014 0000 ; AT THE END OF THE PROGRAM. THE TOTAL NUMBER OF SAMPLES TO BE
0015 0000 3 TAKEN CAN BE VARIED FROM 1 TO 65,535 BY ADJUSTING THE CONSTANT
0016 0000 ; "NSAMP" AT THE END OF THE PROGRAM. DEPENDING ON THE SEEK TIME
0017 0000 ; AND HEAD LOAD TIME OF YOUR DISK DRIVES, THIS PROGRAM CAN BE
0018 0000 ; USED TO SAMPLE IN EXCESS OF 5000 BYTES PER SECOND WITHOUT LOSS
0019 0000 3 OF DATA. IF THE AQUISITION RATE ‘IS INCREASED BEYOND THE
0020 0000 ; MAXIMUM RATE WHICH THE PROGRAM CAN HANDLE, THE PROGRAM WILL
0021 0000 ; ABORT WITH THE MESSAGE "BUFFER OVERRUN ERROR", INDICATING THAT
0022 0000 ; ONE BUFFER WAS FILLED BEFORE THE OTHER COULD BE EMPTIED TO DISK.
0023 0000 3
0024 0000 ; ##*"*TMPORTANT#**#**, WHEN USING THIS PROGRAM BE SURE TO USE A
0025 0000 ; DISK WHICH HAS BEEN FORMATTED USING "FORMAT S" TO INCREASE THE
0026 0000 ; SKEW BETWEEN LOGICALLY ADJACENT SECTORS. IF YOU USE A DISK
0027 0000 ; FORMATTED WITH THE STANDARD SKEW THE ALLOWABLE AQUISITION RATE
0028 0000 ; WILL BE VERY LOW BECAUSE THE RELATIVELY LONG SERVICE ROUTINE
0029 0000 ; WILL "STEAL" ENOUGH CYCLES FROM THE NORMAL CODOS WRITE-RECORD
0030 0000 ; SVC THAT IT WILL NOT BE ABLE TO TRANSFER ALL THE BYTES FROM THE
0031 0000 ; DOUBLE BUFFER TO THE DMA BUFFER BEFORE THE READ-WRITE HEAD HAS
0032 0000 ; PASSED THE DESIRED SECTOR, THUS REQUIRING ANOTHER FULL 1/6TH OF
0033 0000 ; A SECOND FOR EACH SECTOR WRITTEN.
0034 0000 3
0035 0000 ; IN ACTUAL PRACTICE, THE SERVICE ROUTINE SHOULD BE SHORTENED AS
0036 0000 3 MUCH AS POSSIBLE AND THE BUFFERS MADE AS LARGE AS POSSIBLE, TO
0037 0000 ; MAXIMIZE THE CONTINUOUS THROUGHPUT TO THE DISK. SHORTENING THE
0038 0000 ; SERVICE ROUTINE MAY BE EASY, BECAUSE MOST "REAL" DEVICES WILL
0039 0000 3 PROVIDE THEIR OWN INTERRUPT (E.G., A/D), SO THAT THE TIMER WONT
0040 0000 ; BE NEEDED, AND THE DECREMENTING OF "COUNT" MAY NOT BE NEEDED.
0041 0000 ; ALSO, PROPER HOOKUP TO THE 6522 WILL ALLOW THE ACT OF READING
0042 0000 ; THE DATA REGISTER ALSO CLEAR THE INTERRUPT.
0043 0000 3
004% 0000 ; THE MOST IMPORTANT FEATURE OF THIS PROGRAM IS THAT IT PROVES
0045 0000 ; THAT YOU CAN INTERRUPT CODOS FREELY, EVEN DURING DISK
0046 0000 ; OPERATIONS, WITHOUT ANY PROBLEMS.
0047 0000 ;
0048 0000 ; *DIRECTIONS: BEFORE EXECUTING, WIRE YOUR INPUT SOURCE TO PORT
0049 0000 ; A OF THE 6522. SET THE DESIRED SAMPLE FREQUENCY AND TOTAL
0050 0000 ; NUMBER OF SAMPLES AT THE END OF THE PROGRAM. ASSIGN CHANNEL
0051 0000 ; 6 TO THE DISK FILE DESIRED. BEGIN EXECUTION.
0052 0000 ;
0053 0000 3 THIS PROGRAM IS SET UP FOR PORT A OF THE USER PARALLEL PORT ON
0054 0000 3 THE MTU-130 COMPUTER, BUT CAN EASILY BE RE-ASSEMBLED FOR OTHER
0055 0000 3 DEVICES OR OTHER ADDRESSES.

De4

)

EQUATES AND

0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066

0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094

0095
0096

0097
0098
0099
0100
0101
0102
0103
0104

0000
0000
0000
0000
00BO
00B2
OOB4
OOEE
0000
0000
0000
BFDO =

BFDO
BFD1
BFD2

BFD3
BFD4
BFD5
BFD6

BFD7
BFD8

BFD9
BFDA
BFDB
BFDC

BFDD

BFDE
BFDF
0000
0000
0000
1000
0020
0030
3000
0050
0000
0000
0000

0000
0010
0012
0013

0015
0016
0017
0018
OOEC

0019

PAGE 0

BUFPAG
YBUF
COUNT
BOFULL
BIFULL
DONE
INTYSV
INTASV

MTU 6502 ASSEMBLER 1.0

-PAGE ‘EQUATES AND PAGE 0'

CODOS EQUATES...

= $B0 3PSEUDO REGISTER 0
= U0+2 3PSEUDO REGISTER 1

U142 ;PSEUDO REGISTER 2

= $EE 3SVC ENABLE FLAG

6522 VIA EQUATES...

$BFDO 36522 ADDRESS FOR USER PORT

10+0 ;PORT B DATA

I0+1 3PORT A DATA

10+2 ;PORT B DIRECTION

I0+3 3;PORT A DIRECTION

IO+4 ;TIMER 1...
10+5
10+6
10+7
10+8 ;TIMER 2...

T0+9
IO+$A 3; SHIFT REG

10+$B ;AUX CONTROL

10+$C ;PERIPHERAL CONTROL

I0+$D ; INTERRUPT FLAGS

= 10+$E ; INTERRUPT ENABLES

= 10+$F ;PORT A DATA, NO HANDSHAKE

PROGRAM EQUATES...

$1000 ;BUFFER O STARTING ADDRESS

32 ;NUMBER OF PAGES IN BUFFER 0 (8K BYTES)
BUFO/256+NPAGE ;PAGE LIMIT FOR BUFFER 0
256*NPAGE+BUFO;BUFFER 1 STARTING ADDRESS

= BUF1/256+NPAGE ;PAGE LIMIT FOR BUFFER 1

0-PAGE RAM...#*

se $10 ;***0-PAGE ORG
#42 ;POINTER TO CURRENT BUFFER PAGE

we 41 ;INDEX WITHIN CURRENT PAGE
ms #42 ;COUNTER OF SAMPLES LEFT TO TAKE
we Leal ;FLAG, BUFFER 0 IS FULL
Re a1 ;FLAG, BUFFER 1 IS FULL
#s 41 ;FLAG, ALL DATA SAMPLES TAKEN
41 ;USED TO SAVE Y DURING INTERRUPT
= $00EC 3A SAVE LOCATION USED BY CODOS INT/BRK

; PROCESSOR

D-5

MAIN

0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
o142
0143
o144
0145
0146
0147
0148
0149

PROGRAM - INITIALIZATION

0019
0019
0019
0700
0700
0700
0700
0701
0703
0705
0707
0709
070B
070D
O70F
0711
0713
0715
0716
0719
071B
071D
0720
0722
0723
0725
0727
0729
072B
072D
O72E
O72F
0730
0730
0730
0730
0732

0735
0737
073A
073D
0740

0743
0746
o749

A900
8DD3BF
A9CO
8DDBBF
8DDEBF
AD4808
8DD4BF
AD4908
8DD5BF
58

H
3
DATAIN

MTU 6502 ASSEMBLER 1.0

»PAGE 'MAIN PROGRAM - INITIALIZATION’

#5 $0700 ;*PROGRAM ORG*

BEGIN EXECUTION HERE AFTER ASSIGNING CHANNEL 6 TO A FILE.

CLD
LDA #BUFO&$FF
STA BUFPAG ;DEFINE PAGE POINTER FOR SERVICE ROUTINE
LDA #BUFO/256
STA BUFPAG+1
LDY #0
STY YBUF ;DEFINE INDEX WITHIN PAGE OF BUFFER
STY BOFULL 3CLEAR ALL FLAGS...
STY B1FULL
STY DONE
LDA #0 ;DEFINE STARTING COUNT OF SAMPLES TO TAKE
SEC 3=2'S COMPLEMENT OF REQUESTED NUMBER
SBC NSAMP

STA COUNT

LDA #0
SBC NSAMP+1
STA COUNT+1
SEC ;ENABLE CODOS SVCS
ROR SVCENB
LDA #SERVC&SFF
STA uo ;SET UO = ADDRESS OF INTERRUPT SERVICE
LDA #SERVC/256
STA U0+1

BRK
«BYTE 24 ;SVC #24 = DEFINE IRQ VECTOR

SEI

SETUP 6522 TIMER IN FREE-RUNNING INTERRUPT MODE...

LDA #0
STA UDDRA 3SET DATA DIRECTION = IN ON PORT
LDA #$CO
STA UACR 3FREE RUN TIMER 1

STA UIER jENABLE TIMER INTERRUPTS
LDA DELAY
STA TIL 5LOAD DESIRED DELAY INTO TIMER
LDA DELAY+1
STA UTICH jACTIVATE TIMER
CLI ;LET 'ER RIP!

MAIN

0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162

0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184

0185
0186
0187
0188

0189
0190
0191
0192
0193
0194
0195
0196
0197
0198

0199
0200
0201
0202
0203
0204

PROGRAM - DISK WRITE LOOPS

O74A
O74A
O74A
O74A
O74A
O74C
O74E
0750
0752
0754
0756
0758
O75A
O75C
075C
075C
O75E
0760
0762
0764
0767
0767
0767
0768
0769
0763
076D
076D
o76D
076D
O76F
0771
0773
0775
0777
0779
0773
o77D
O77F
O77F
O77F
0781
0783
0785
0787
078A
078A
078A
078B
o78c
078E
0790
0793
0793
0793

00
10
A900
8516
4CHAOT

Taos ee ae ETUPO

3
WAITO

WRITEO

+ PAGE

LDA
STA
LDA
STA
LDA
STA

LDA
STA

LDX

MTU 6502 ASSEMBLER 1.0

"MAIN PROGRAM - DISK WRITE LOOPS!
COME HERE WHEN WAITING FOR BUFFER O TO BE FILLED BY INTERRUPT

SERVICE ROUTINE.

#0
v2
#NPAGE
U2+1
#BUFO&SFF
U1
#BUFO/256
U1+1
#6

SETUP FOR WRITE OF BUFFER 0 AS CODOS RECORD.

;DEFINE SIZE OF RECORD = ENTIRE BUFFER 0...

;DEFINE START ADDR. OF RECORD = BUFFER 0

;DISK IS ON CHANNEL 6

COME HERE TO TEST SEMAPHORES FROM IRQ SERVICE ROUTINE...

BIT
BMI
BIT
BMI
JMP

BOFULL
WRITEO
DONE
FINIO
WAITO

;TEST "BUFFER 0 FULL" FLAG
;BRANCH IF BUFFER IS FULL
;ELSE TEST "AQUISITION DONE" FLAG

;EXIT IF DONE
;ELSE REPEAT

COME HERE WHEN BUFFER 0 IS FULL. WRITE IT TO DISK (CHAN 6)...

BRK
.BYTE
LDA
STA

16
#0
BOFULL

;SVC #16 = WRITE RECORD

;CLEAR "BUFFER 0 FULL" SEMAPHORE

SETUP FOR NEXT WRITE FROM BUFFER 1...

;DEFINE RECORD SIZE = WHOLE BUFFER 1

;DEFINE RECORD START = BUFFER 1 ADDRESS

;CHANNEL 6

COME HERE TO TEST SEMAPHORES FOR BUFFER 1 FROM IRQ ROUTINE...

;TEST "BUFFER 1 FULL" FLAG

;BRANCH IF FULL o
;ELSE TEST "AQUISITION DONE" FLAG

3EXIT IF THROUGH
3ELSE REPEAT

COME HERE WHEN BUFFER 1 IS FULL. WRITE IT TO DISK.

LDA #0
STA v2
LDA #NPAGE
STA U2+1
LDA #BUF 1&$FF
STA U1
LDA #BUF 1/256
STA Ui+1
LDX #6

BIT BIFULL
BMI WRITE1
BIT DONE
BMI FINI1
JMP WAIT1

BRK
-BYTE 16
LDA #0
STA B1FULL
JMP SETUPO

;SVC 16 = WRITE RECORD TO CHANNEL

;CLEAR "BUFFER 1 FULL" FLAG

;GO REFILL BUFFER 0

COME HERE WHEN FINISHED WHILE FILLING BUFFER 0...

MAIN

0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234

0235
0236
0237
0238
0239

PROGRAM - DISK WRITE LOOPS

0793
0795
0796
0798
O79A
o79C
O79E
O7A0
O7A1
O7A2
O7A5
O7A5
O7A5
OTAT
0748
OTAA
O7AC
O7AE
07B0
O7B2
07B3
O7B4
O7B4
07B4
O7B4
07B6
O7B7
07B8
07B8
07B9
O7BA
O7BB
O7BC
O7D1
o7D2

A512 FINIO

3
FINI1

5
EXITOK

MTU 6502 ASSEMBLER 1.0

;RECALL INDEX TO NEXT BYTE IN BUF

3;COMPUTE FRACTIONAL PAGE FILLED

;DEFINE RECORD SIZE...

3SVC 16 FOR FINAL WRITE OF PARTIAL RECORD

COME HERE WHEN FINISHED WHILE FILLING BUFFER 1...

LDA YBUF
SEC
SBC #BUFO&$FF
STA U2
LDA —- BUFPAG+1
SBC #BUFO/256
STA U2+1
BRK
-BYTE 16
SMP ——- EXITOK

LDA YBUF
SEC
SBC #BUF 1&$FF
STA U2
LDA —_ BUFPAG+1
SBC #BUF 1/256
STA -U2+1
BRK
BYTE 16

;RECALL INDEX TO NEXT BYTE IN BUF

;COMPUTE FRACTIONAL PAGE FILLED

;DEFINE RECORD SIZE...

;SVC 16 FOR FINAL WRITE OF PARTIAL RECORD

COME HERE FOR NORMAL EXIT

LDX
BRK
«BYTE

BRK
«BYTE

»BYTE
-BYTE
» BYTE

«BYTE 0
RTS

#6

22

a
2

13

;CHANNEL 6

3SVC 22 = FREE CHANNEL 6

3SVC 2 = INLINE MESSAGE

3+.-ON CHANNEL 2
;CARRIAGE RETURN

"ACQUISITION COMPLETE.'

INTERRUPT

0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272

0273
0274
0275
0276
0277
0278
0279
0280

07D3
07D3
07D3
07D3
07D3
07D5
07D8
07DB
O7DD
O7DF
O7EO
O7E2
O7E4
O7E6
O7E7
O7E9
O7EB
O7EC
O7EE
O7FO
O7F2
O7F4
O7F7
O7F7
O7F9
O7FB
O7FC
O7FE
0800
0802
0804
0804
0806
0806
0808
080A
080c
080E
080E
0810
0812

SERVICE ROUTINE

8418
ADD4BF
ADD 1BF
AN12
9110

A030
4co408

H
H
3
SERVC

5
SERV3

5
SERV5

3
SERV6

3
SEREND

MTU 6502 ASSEMBLER 1.0

PAGE ‘INTERRUPT SERVICE ROUTINE’

INTERRUPT SERVICE ROUTINE FOR IRQ...

STY INTYSV
LDA UTIL,
LDA‘ UDRAH “
LDY BUF
STA (BUFPAG) ,Y

STY YBUF
BNE SERV6

LDY BUFPAG+1

CcPY #BOPGLM

BNE SERV3

ROR BOFULL
BIT B1FULL
BMI OVERUN
LDY #BUF 1/256
JMP SERV5

CPY #B1PGLM
BNE SERV5
SEC
ROR B1FULL
BIT BOFULL
BMI OVERUN
LDY #BUFO/256

STY BUFPAG+1

INC COUNT
BNE SEREND
INC COUNT+1
BEQ FINI

LDY INTYSV
LDA INTASV

D-9

;SAVE Y, A SAVED IN INTASV BY CODOS
;CLEAR 6522'S INTERRUPT FLAG
3; INPUT DATA BYTE FROM PORT
;RECALL INDEX TO BUFFER
;STORE BYTE INTO BUFFER
;BUMP INDEX
3 SAVE INDEX
;BRANCH IF NOT CROSSING PAGE BOUNDARY

;ELSE RECALL HI BYTE OF BUFFER POINTER

; ADVANCE
;CHECK FOR END OF BUFFER 0
;BRANCH IF NOT AT END OF BUFFER 0

;ELSE SET "BUFFER 0 FULL" SEMAPHORE

;TEST "BUFFER 1 FULL" SEMAPHORE
;BRANCH IF OTHER BUFFER NOT EMPTIED YET

;ELSE SETUP POINTER TO OTHER BUFFER

;CHECK FOR END OF BUFFER 1
;BRANCH IF NOT AT END OF BUFFER 1

;ELSE SET "BUFFER 1 FULL" SEMAPHORE

;TEST "BUFFER 0 FULL"
;BRANCH IF OTHER BUFFER NOT EMPTIED YET

;ELSE SETUP FOR OTHER BUFFER

;REDEFINE POINTER TO START OF OTHER BUFFER

; INCREMENT 2'S COMP. OF SAMPLE COUNT

3GO RETURN IN NOT DONE

;GO SIGNAL CONPLETION IF INCREMENT TO ZERO

;RESTORE Y
;RESTORE A
;EXIT SERVICE ROUTINE

ALTERNATE EXITS FROM SERVICE ROUTINE MTU 6502 ASSEMBLER 1.0

0281 0813 -PAGE ‘ALTERNATE EXITS FROM SERVICE ROUTINE’
0282 0813 3
0283 0813 ; COME HERE WHEN DESIRED NUMBER OF SAMPLES HAVE BEEN INPUT
0284 0813 H
0285 0813 38 FINI SEC
0286 0814 6617 ROR DONE ;SET "DONE" SEMAPHORE
0287 0816 A900 LDA #0
0288 0818 8DDBBF STA _-UACR ;KILL TIMER INTERRUPTS
0289 081B A940 LDA #$40
0290 081D 8DDEBF STA —_-UIER
0291 0820 4COE08 JMP = SEREND ;THEN NORMAL EXIT
0292 0823 3
0293 0823 F COME HERE IN CASE OF BUFFER OVERRUN. DATA WAS AQUIRED FASTER
0294 0823 ; THAN IT COULD BE WRITTEN TO DISK.
0295 0823 7
0296 0823 A900 OVERUN LDA #0
0297 0825 8DDBBF STA —_UACR ;KILL TIMER INTERRUPTS
0298 0828 8DDEBF STA —_-UIER
0299 082B 78 SEI
0300 082C 00 BRK
0301 082D 02 «BYTE 2 ;SVC 2 = MESSAGE
0302 082E 02 «BYTE 2 3++-ON CHANNEL 2
0303 082F OD «BYTE 1 3CR
0304 0830 4255.. «BYTE 'BUFFER OVERRUN ERROR.'
0305 0845 00 «BYTE 0
0306 0846 00 BRK
0307 0847 00 «BYTE 0 ;RETURN TO CODOS, SHOW REGS
0308 0848 ;
0309 0848 ‘ #*##INSTALL DESIRED DELAY BETWEEN SAMPLES (MICROSECS), AND**#
0310 0848 ‘ ***TOTAL NUMBER OF SAMPLES TO BE TAKEN HERE... uae
0311 0848 7
0312 0848 FAOO DELAY .WORD 250 ;=4000 SAMPLES PER SECOND
0313 084A 50C3. NSAMP .WORD 50000 ;QUIT AFTER 50000 SAMPLES (12.5 SEC)
0314 084c ;
0315 084c -END

O ERRORS IN PASS 2

APPENDIX E

CODOS SYSTEM ADDRESSES

Table E-1 gives the addresses of certain important memory locations within the

SODOS operating system nucleus which the advanced user may wish to examine or

modify. Casual modification of values listed may crash the system and cause
unpredictable side effects. See sections 8 and 9 for further information.

TABLE E-1: IMPORTANT CODOS SYSTEM ADDRESSES (HEXADECIMAL)

Address Size Description of contents

OOEC if Accumulator save during SVC or IRQ processing.

OOED 1 Error number for user-defined error recovery.

OOEE 1 SVC enable flag.

E603 3 Jump to warm re-entry point for CODOS Monitor.

E615 3 Jump to "REQUIRED SOFTWARE NOT LOADED" error message.

E621 3 Jump to console-character-out routine with CTRL-S/Q (XON?XOFF).

E6F3 9 Todays date (as entered by operator from DATE command).

E74F 1 Number of disk drives in system, 1 to 4 (See Note 2).

ET5C 2 Address+1 where last error was detected by CODOS.

E763 1 Cumulative count of soft disk read errors.

E764 1 Cumulative count of soft disk write errors.

E765 1 Cumulative count of recalibrate commands issued to disk controller
during read/write error recoveries.

E766 | Sector number for last disk error causing a recalibrate.

E767 1 Track number for last disk error causing a recalibrate.

E779 1 Flag. If bit 7 = 1 then system will ignore (continue after)
irrecoverable disk read errors (use a last resort only).

ETTA 1 Flag. If bit 7 = 1 then permits save command to overwrite an
existing file with the same name.

E780 1 Flag. If bit 7 = 1 then program executing was invoked by SVC #13.

E788

E793

E796

0238

E798

E799

E79F

E7BE

E7CO

ETC2

E7C4

E7C6

E7C8

0303

Keyboard echo flag for CODOS. Set to $80 to enable echo.

Current ASCII default file extension character ("C").

Current default drive number (Set by DRIVE command).

Maximum record length for input line.

Number of file names per line for FILES command (5 or less).

Number of bytes to dump per display line.

ASCII character to be used in lieu of Backslash.

Pointer to start of system input line buffer.

Pointer to start of system output line buffer.

Pointer to large transient buffer for COPYF, ETC.

Size (NOT. final address) of large transient buffer.

Pointer to user-defined interrupt service routine.

Pointer to user-defined error recovery routine.

Jump executed when CNTRL-C is entered from console.

NOTES FOR TABLE E-1:

1. The above addresses are valid for CODOS 2.0 only and are subject to change
in future revisions.

2. The SYSGENDISK utility must be used if the system is to be changed to
support more than 2 disk drives.

3. Additional parameter and subroutine addresses can be found in Chapters 8, 9,
10, and Appendix F.

NOTES FOR TABLE E-1:

1, The above addresses are valid for CODOS 2.0 only and are subject to change
in future revisions.

2. See Chapter 10 for a description of the requirements for Console and Device

input and output routines.

3. The SYSGENDISK utility must be used if the system is to be changed to

support more than 2 disk drives.

4, The flag for ignoring "strange" control keys is normally set so that con-

trol codes such as CNTRL-L (for clearing the display) can be embedded harmlessly in

a CODOS command. See SVC #5 description for details.

5. Additional parameter and subroutine addresses can be found in Chapters 8, 9,
10, and Appendix F.

Bank 0

Address

FFOO-FFFF

FEOO-FEFF
E600-FDFF

E300-E5FF
E000-E2FF
DD20-DFFF
D800-DD1F

D500-D7FF
D300-D4FF
D280-D2FF
C5B0-D27F
CO00-C5AF

BEOO-BFFF

B400-BDFF
A000-B3FF

0700-BDFF

06E0-06FF
0600-06DF
05C0-O5FF
0500-05BF
0400-O4FF
0306-03FF
0303-0305
0300-0302
02FD-O02FF
O2FA-02FC
02F9
02E0-02F8
02B0-02DF
0280-02AF
0240-027F
0200-023F

0113-01FF
0100-0112

OOFO-OOFF
OOED-OOEF
00C 1-~00EC
Q0B0-00CO
0000-O0AF

APPENDIX F

MTU-130 STANDARD SYSTEM MEMORY MAP

Contents

Bootstrap ROM, Vectors, Disk controller registers.

CODOS System overlay RAM area.

CODOS nucleus.
CODOS Block-assignment tables for drives 1 and 0 and directory buf.

Pool disk buffers 0, 1, and 2.
SVC Processor (see chap. 5)
Command Processor (can be overlaid; change $D800 to non-$D8 if so).
Pool disk buffers 5, 4, and 3. (can be overlaid if not used)
Optional pool buffers for 3- and 4-drive systems or UNUSED

Printer driver or UNUSED (see chap. 10)
Console I-O dirver (can be overlaid if not using console)
Sereen Graphics Drivers or UNUSED (see chap. 9)

System I-O (or UNUSED ordinary RAM). Normally I-O0 is enabled.

CODOS Utility area (when needed only)
Default Large Transient Buffer (when needed only)

Normally Available RAM (or used by BASIC and BASIC program).

Tab stop table (up to 32 tab stops)
System output line buffer (224 decimal bytes)
Function key legends (8 each, 8 bytes in length, see chap. 8)
System input line buffer (192 decimal bytes)

Function key strings (8 each, 32 bytes in length)
Jump table to I-0 routines, graphics, etc.

Jump to CNTRL/C processor

Jump to operating system warm reset entry
Jump to IQR and BRK processor

Jump to NMI processor
I-O space enable semaphore ("SEEIO")
OPEN (reserved for more scratch)
Scratch ram used by Console I-O and graphics drivers

Seratch RAM for CODOS.

OPEN (reserved for more global varaibles)
Global variables, constants & flags for Console I-O and graphics

(see chap. 8, 9, and 10)
Stack.
CODOS bank switch/restore routine.

Seratch RAM for console I-0.
Global RAM used by CODOS
Seratch RAM used by CODOS nucleus, SVC Processor and Command Proc.
Pseudo registers U0-U7 (or available RAM).

UNUSED

Bit-mapped CRT display RAM

Backtrack buffer (for lines recalled by CNTRL-B).
Standard 96-character ASCII font table for CRT.

F-1

APPENDIX G

SYNTAX DIAGRAMS FOR CODOS BUILT-IN COMMANDS

Figure G-2 provides syntax diagrams which unambiguously define how CODOS

built-in commands may be legally constructed. These diagrams are called Wirth
diagrams, in honor of Niklaus Wirth, who popularized the use of these diagrams in

order to define the Pascal programming language.

To construct a legal CODOS command, you may follow any path indicated by the
diagram. The rounded-enclosures and circles are CODOS keywords and delimiters

which must be entered exactly as shown. Rectangles enclose names of entities which

must be provided by the user. For example, figure G-1 shows a Wirth diagram for a

BASIC language FOR statement. If you were to "read" this diagram "out loud", you

might read it as follows:

"A BASIC 'FOR' statement is the keyword 'FOR', followed by a variable, followed

by an "=", followed by a value, followed by a 'TO' keyword, followed by a value,

optionally followed by the keyword 'STEP' and a value."

FIGURE G-1: WIRTH DIAGRAM FOR BASIC "FOR" STATEMENT

: - VALUE 4

Lammers} ODay

Gusmao

®

CHANNEL

DEVICE

DRIVE #

PROTECT

G-4

LOT}

of load

2 ¥ DRIVE # :

UNPROTECT

Descriptions of Identifiers Used:

I-O Channel number, 0 to 9.

Filename, 2 to 12 characters plus optional 1-character extension.

Disk drive number, 0 to 3.

I-O device name, 1 character.

Starting address.

Memory bank number, 0 to 3.

End address.

Destination address.

An ASCII character.

A numeric expression evaluating between 0 and $FF.

Function key number, 1 to 8.

Entry point address.

The ASCII carriage return character, $0D.

G-6

The MTU-130 Computer
internal operations.

ean be recognized by the fact that bit 7 is a 1 whereas all ASCII codes have

set to a zero.

GRAPHIC

OR NAME

APPENDIX H

MTU-130 CHARACTER CODE CHART

and CODOS uses

HOW
GENERATED

CTRL/ SPACE

CTRL/
CTRL/
CTRL/
CTRL/
CTRL/
CTRL/
CTRL/
BACKSPACE
TAB
LINE FEED

CTRL/ K
CTRL/ L
RETURN

CTRL/
CTRL/

Aya vVAwWS

oz

CTRL/
CTRL/
CTRL/
CTRL/
CTRL/
CTRL/
CTRL/
CTRL/
CTRL/

CTRL/
CTRL/

ESC
CTRL/SHIFT/ ,¢
CTRL/ =+
CTRL/SHIFT/ .>

CTRL/SHIFT/ /?

NH MES GHYUDWO'

the standard ASCII character
Special keys on the keyboard are given non-ASCII

GRAPHIC HOW

code for all
eodes which

OR NAME GENERATED

SPACE
!

t+ RCRA RWG

Nis

© OCIAN EWN

HORE Bee oe

Space

SHIFT/

SHIFT/
SHIFT/

SHIFT/

SHIFT/
SHIFT/
tn

SHIFT/

SHIFT/

SHIFT/

SHIFT/

€

)
!

arr

AGC WMIADKVEWN OO

é

$
t
e
&
*

¢
IT. HIFT/

33
SHIFT/
= +
SHIFT/
SHIFT/

bar
iW
ony

3#
4$
5h
7&

9¢
0)
3%
=+

et

/?

bit 7

GRAPHIC HOW CHAR GRAPHIC HOW

tee s—

OR NAME GENERATED CODE OR NAME GENERATED

é@ SHIFT/ 2@ 60 . xe
A SHIFT/ A 61 a A
B SHIFT/ B 62 b B
c SHIFT/ C 63 e c
D SHIFT/ D 64 d D
E SHIFT/ E 65 e E
F SHIFT/ F 66 f F
G SHIFT/ G 67 g G
H SHIFT/ H 68 h H
I SHIFT/ I 69 i I
J SHIFT/ J 6A j J
K SHIFT/ K 6B k K
L SHIFT/ L 6c 1 L
M SHIFT/ M 6D n M
N SHIFT/ N 6E n N
0 SHIFT/ 0 6F ° 0

P SHIFT/ P 70 p P
Q SHIFT/ Q 11 q Q
R SHIFT/ R T2 r R
s SHIFT/ S B 8 s
T SHIFT/ T 74 t T
v SHIFT/ U 15 u u
v SHIFT/ V 76 v v
W SHIFT/ W 17 w W
x SHIFT/ X 78 x x
Y SHIFT/ Y 79 y ¥
Zz SHIFT/ Z TA Z Z
Cc 4 1B { 4}
\ 1 TC : SHIFT/
a SHIFT/ CJ re) } SHIFT/
A SHIFT/ 6A TE a SHIFT/

SHIFT/ - TF DEL RUBOUT | 1

CHAR GRAPHIC HOW CHAR GRAPHIC HOW
CODE OR NAME GENERATED CODE OR NAME GENERATED

80 f1 AO cursor up

81 f2 Al cursor left

82 £3 A2 cursor right
83 fh A3 cursor down
84 £5 Au HOME
85 £6 AS DELETE

86 £7 A6 INSERT
87 £8 AT

88 PFI A8
89 PF2 AQ

8A x AA
8B = AB
8c = AC

8D + AD
8E ENTER AE

8F AF

90 SHIFT/ f1 BO SHIFT/ cursor up

91 SHIFT/ f2 B1 SHIFT/ cursor left

92 SHIFT/ £3 B2 SHIFT/ cursor right

93 SHIFT/ f4 B3 SHIFT/ cursor down
94 SHIFT/ £5 BY SHIFT/ HOME

95 SHIFT/ £6 BS SHIFT/ DELETE

96 SHIFT/ f7 B6 SHIFT/ INSERT

97 SHIFT/ £8 BT

98 SHIFT/ PF1 B8

99 SHIFT/ PF2 BO
9A SHIFT/ X BA

9B SHIFT/ > BB
9c SHIFT/ - BC

9D SHIFT/ + BD
9E SHIFT/ ENTER BE
OF BF

Code values from $CO through $FF have no defined function and may not be generated

by the MTU-130 keyboard.

H-3

APPENDIX I

USING EXTENDED MEMORY ADDRESSING

The MIU-130 computer and CODOS 2.0 both support extended memory addressing
beyond the normal 64K limit of the 6502 microprocessor. This feature is implement-
ed such that it is completely transparent to the programmer (even machine language
programmer) if it is not used. It is important to realize that the extended
addressing feature is not a simple bank switching scheme. Instead it is driven by
the addressing mode used by instructions and actually allows a single program plus
its data to exceed 64K without programmer hardship. Hardware level programming
details of the extended memory addressing feature may be found in section 4.6 of
the Monomeg Single Board Computer hardware manual.

The 256K addressing capacity of the MTU-130 is divided into four banks of 64K
bytes each. Bank 0 is the normal or system bank which is automatically selected
and assumed when a bank is not specified or the Programmer wishes to ignore
extended addressing. Bank 0 is also special because it contains the CODOS oper-
ating system, display and keyboard I/O drivers, all of the system 1/0 addresses,
the system parameter area, and most importantly, the stack and the base (zero)
page. All of the memory maps and system addresses given in this manual refer to
locations in bank 0 unless otherwise noted. Even with this heavy usage, the amount
of memory left to the user in bank 0 is as large or larger than on other competi-
tive 6502 based systems.

The simplest use of extended addressing by an assembly language program is to
specify a data bank that is different from 0. In this usage, the user program
still resides in bank 0 but now any large data arrays are stored in another bank
thus allowing the actual program to become much larger. The data bank is set by
the program by altering the least significant two bits of location BFEO. The
settings are 11 for bank 0, 10 for bank 1, 01 for 2, and 00 for 3. When changing
the data bank select bits, be careful not to disturb any of the other bits. Now
that the data bank is set differently from the program bank (which is still 0), any
instruction using the (INDIRECT,X) addressing mode or the (INDIRECT),Y addressing
mode will refer to the selected data bank for its data (the indirect address point-
er is still in page 0 of bank 0 as always). The execution of all other "normally
fetched" 6502 instructions is unaffected by the data bank selection. After a
little thought and study of the 6502 instruction set it should be obvious that
these two addressing modes must be used for addressing large (greater than 256)
data arrays and are seldom if ever used for addressing small lists or individual
datums.

The CODOS SVC facility may be freely used with the data bank set to anything
(except SVC #15 and #16) since the SVC processor will “save and restore the data
bank setting. SVC #15 (read record) and #16 (write record) will transfer to/from
memory in the data bank that was selected when the SVC was executed. This provides
an ideal way of saving or retrieving those large data arrays on disk.

It is also possible to run an assembly language program in a bank other than
bank 0. When CODOS starts a user program, it will automatically select the correct
Program bank and will also set the data bank equal to the program bank. The
Program bank may also be set by the user program by altering bits 2 and 3 of
location BFEO to 11 for bank 0, 10 for 1, 01 for 2, and 00 for bank 3. Program
bank selection generally affects all memory references made during program execu-
tion except those described previously in connection with the data bank. There are
other exceptions described in the next paragraph.

I-1

Program bank selection does not affect references to page 0 or the stack
however. Thus page O and the stack (page 1) always reside in bank 0 regardless of

what the program bank is set to. This is useful if one wishes to jump between

banks since the code that modifies the program bank and then jumps into the new

bank will not be affected by any intermediate setting of the program bank select
bits. Actually, jumping between bank 0 and the user's program bank may be fairly

frequent since CODOS imposes the following restrictions on program bank usage:

1. SVCs may only be issued by a program running in bank 0.

2. The standard display driver and keyboard subroutines reside in bank 0.

3. The I/O registers are in bank 0 (although you could reach them indirectly by
temporarily setting the data bank to 0).

Because of these restrictions, it is recommended that bank 0 be used for program

storage unless the program becomes so large that it cannot fit. If it does over-

flow, the main program should stay in bank 0 with large subroutines moved to

another bank.

When an interrupt is recognized (either IRQ, NMI, or a BRK instruction), an

“interrupt mode flip-flop" is set which temporarily forces the program bank to 0

but leaves the data bank selection in effect. Therefore, interrupt service
routines must also reside in bank 0. The effect of the program bank is restored
when an RTI instruction is executed. If the interrupt service routine uses
instructions affected by the data bank selection, it will be necessary for the
program to save and restore the data bank selection.

APPENDIX J

EFFECT OF CONSOLE INTERRUPT AND RESET

The MTU-130 console keyboard has three keys in the extreme upper right corner

that control the system Reset function and the Non-maskable interrupt. The follow-

ing describes what CODOS does and does not do in response to pressing these keys.

Interrupt Key

The Interrupt key (labelled INT) unconditionally triggers a non-maskable inter-

rupt sequence in the 6502 microprocessor when it is pressed. This interrupt will

unconditionally interrupt any running program, even CODOS itself, and jump to $029A

which in turn normally contains a jump to the CODOS NMI processor unless a user-

defined NMI service routine is used instead. CODOS's non-maskable interrupt

service entry point does the following:

1. Assigns channel 2 to the console display and channel 1 to the keyboard.

2. Prints the letters "NMI" and then the registers which represent the machine

state at the time of interrupt (see REG command in Chapter 3).

3. Waits for the operator to enter a CODOS command.

Program execution can be safely resumed at the point of interruption by entering

the NEXT command it the following is true:

1. The program expects channels 1 and 2 to be assigned to the console.

2. There is no chance that an SVC was being executed at the time of interrupt.

3. That the point of interruption did not occur in the system or the I-0 drivers.

Note that execution of certain illegal opcodes will freeze the 6502 CPU and make it

unresponsive to the INT key. In this case the RESET key is the only way to restore

control.

Reset Key

The Reset key (labelled RESET) unconditionally triggers a system reset when it

is released after having been pressed for at least 1/4 second. Pressing Reset for

less than 1/4 second (perhaps by accident), will have no effect. The following

hardware related events happen in response to Reset:

1. All system I/O ports (including the user parallel port) revert to inputs.

2. The Reset signal on the User parallel I/O port connector goes low.

3. The display turns on and reverts to 480x256 black and white.

4, The Program and Data banks revert to bank 0.

5. The disk controller is reset.

6. The serial interface is reset.

7. The CPU enters the Bootstrap PROM on the Disk Controller board.

The bootstrap program in the PROM next looks at the state of the MOD key on the

keyboard. If the MOD key is pressed, it loads CODOS from the disk in drive 0 just

as if power had been turned on. Most of memory (except $CO00-$FFEF and
$00C3-$00DF) is left alone however (see Appendix C).

If the MOD key is not pressed, the bootstrap program jumps to location $0300
which jumps to the "warm reset" entry point of CODOS which performs the following:

1. Clear decimal mode.

2. Discard stack (S=$FF).

3. Force all drives to "closed" status (does not update open files on disk) which
also forces any channels assigned to files to the "free" condition.

4. Forces console on channels 1 and 2.

5. Restores default drive to 0, banks to 0, default extension to "C", normal

error processing, and restores normal NMI, IRQ, and entl1/C vector settings.

6. Re-initializes text display to normal (24 lines, 80 characters, normal video).

7. Opens drive 0.

8. Displays "RESET" on the console and then waits for a command.

NOTES: Does not re-initialize any I/0 drivers except the console. Any drivers that
1. use the parallel ports and do not set the direction registers and mode on

every character must be re-initialized. Any driver that uses the serial port

will have to be re-initialized.

2. Does not relaod CODOS, I/O drivers, or other programs.

3. If Reset is pressed during disk writes, files on disk may be left in an

undefined state.

APPENDIX K

NON-OVERLAY CODOS COMMANDS

Most CODOS built in commands are loaded into memory from disk only as needed,

typically in less than one half second. These commands are called system overlays,

and reduce the size of the operating system by more than 4K bytes. Since the

overlays are not always in memory, it is normally necessary to maintain an open

disk in drive 0 with the CODOS overlays present. On rare occasions you may wish

to operate without an open disk in drive 0 for some reason. The following CODOS

built in commands are not overlays and are always available whenever the CODOS

system has been booted-up:

